当前位置: 首页>>代码示例>>Python>>正文


Python SparseDataFrame.reindex方法代码示例

本文整理汇总了Python中pandas.sparse.api.SparseDataFrame.reindex方法的典型用法代码示例。如果您正苦于以下问题:Python SparseDataFrame.reindex方法的具体用法?Python SparseDataFrame.reindex怎么用?Python SparseDataFrame.reindex使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pandas.sparse.api.SparseDataFrame的用法示例。


在下文中一共展示了SparseDataFrame.reindex方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_getitem

# 需要导入模块: from pandas.sparse.api import SparseDataFrame [as 别名]
# 或者: from pandas.sparse.api.SparseDataFrame import reindex [as 别名]
    def test_getitem(self):
        # 1585 select multiple columns
        sdf = SparseDataFrame(index=[0, 1, 2], columns=['a', 'b', 'c'])

        result = sdf[['a', 'b']]
        exp = sdf.reindex(columns=['a', 'b'])
        tm.assert_sp_frame_equal(result, exp)

        self.assertRaises(Exception, sdf.__getitem__, ['a', 'd'])
开发者ID:aechase,项目名称:pandas,代码行数:11,代码来源:test_frame.py

示例2: test_reindex_method

# 需要导入模块: from pandas.sparse.api import SparseDataFrame [as 别名]
# 或者: from pandas.sparse.api.SparseDataFrame import reindex [as 别名]
    def test_reindex_method(self):

        sparse = SparseDataFrame(data=[[11., 12., 14.],
                                       [21., 22., 24.],
                                       [41., 42., 44.]],
                                 index=[1, 2, 4],
                                 columns=[1, 2, 4],
                                 dtype=float)

        # Over indices

        # default method
        result = sparse.reindex(index=range(6))
        expected = SparseDataFrame(data=[[nan, nan, nan],
                                         [11., 12., 14.],
                                         [21., 22., 24.],
                                         [nan, nan, nan],
                                         [41., 42., 44.],
                                         [nan, nan, nan]],
                                   index=range(6),
                                   columns=[1, 2, 4],
                                   dtype=float)
        tm.assert_sp_frame_equal(result, expected)

        # method='bfill'
        result = sparse.reindex(index=range(6), method='bfill')
        expected = SparseDataFrame(data=[[11., 12., 14.],
                                         [11., 12., 14.],
                                         [21., 22., 24.],
                                         [41., 42., 44.],
                                         [41., 42., 44.],
                                         [nan, nan, nan]],
                                   index=range(6),
                                   columns=[1, 2, 4],
                                   dtype=float)
        tm.assert_sp_frame_equal(result, expected)

        # method='ffill'
        result = sparse.reindex(index=range(6), method='ffill')
        expected = SparseDataFrame(data=[[nan, nan, nan],
                                         [11., 12., 14.],
                                         [21., 22., 24.],
                                         [21., 22., 24.],
                                         [41., 42., 44.],
                                         [41., 42., 44.]],
                                   index=range(6),
                                   columns=[1, 2, 4],
                                   dtype=float)
        tm.assert_sp_frame_equal(result, expected)

        # Over columns

        # default method
        result = sparse.reindex(columns=range(6))
        expected = SparseDataFrame(data=[[nan, 11., 12., nan, 14., nan],
                                         [nan, 21., 22., nan, 24., nan],
                                         [nan, 41., 42., nan, 44., nan]],
                                   index=[1, 2, 4],
                                   columns=range(6),
                                   dtype=float)
        tm.assert_sp_frame_equal(result, expected)

        # method='bfill'
        with tm.assertRaises(NotImplementedError):
            sparse.reindex(columns=range(6), method='bfill')

        # method='ffill'
        with tm.assertRaises(NotImplementedError):
            sparse.reindex(columns=range(6), method='ffill')
开发者ID:agartland,项目名称:pandas,代码行数:71,代码来源:test_frame.py

示例3: TestSparseDataFrame

# 需要导入模块: from pandas.sparse.api import SparseDataFrame [as 别名]
# 或者: from pandas.sparse.api.SparseDataFrame import reindex [as 别名]

#.........这里部分代码省略.........
            tm.assertIsInstance(series, SparseSeries)

        tm.assertIsInstance(self.iframe['A'].sp_index, IntIndex)

        # constructed zframe from matrix above
        self.assertEqual(self.zframe['A'].fill_value, 0)
        tm.assert_numpy_array_equal(pd.SparseArray([1., 2., 3., 4., 5., 6.]),
                                    self.zframe['A'].values)
        tm.assert_numpy_array_equal(np.array([0., 0., 0., 0., 1., 2.,
                                              3., 4., 5., 6.]),
                                    self.zframe['A'].to_dense().values)

        # construct no data
        sdf = SparseDataFrame(columns=np.arange(10), index=np.arange(10))
        for col, series in compat.iteritems(sdf):
            tm.assertIsInstance(series, SparseSeries)

        # construct from nested dict
        data = {}
        for c, s in compat.iteritems(self.frame):
            data[c] = s.to_dict()

        sdf = SparseDataFrame(data)
        tm.assert_sp_frame_equal(sdf, self.frame)

        # TODO: test data is copied from inputs

        # init dict with different index
        idx = self.frame.index[:5]
        cons = SparseDataFrame(
            self.frame, index=idx, columns=self.frame.columns,
            default_fill_value=self.frame.default_fill_value,
            default_kind=self.frame.default_kind, copy=True)
        reindexed = self.frame.reindex(idx)

        tm.assert_sp_frame_equal(cons, reindexed, exact_indices=False)

        # assert level parameter breaks reindex
        with tm.assertRaises(TypeError):
            self.frame.reindex(idx, level=0)

        repr(self.frame)

    def test_constructor_ndarray(self):
        # no index or columns
        sp = SparseDataFrame(self.frame.values)

        # 1d
        sp = SparseDataFrame(self.data['A'], index=self.dates, columns=['A'])
        tm.assert_sp_frame_equal(sp, self.frame.reindex(columns=['A']))

        # raise on level argument
        self.assertRaises(TypeError, self.frame.reindex, columns=['A'],
                          level=1)

        # wrong length index / columns
        with tm.assertRaisesRegexp(ValueError, "^Index length"):
            SparseDataFrame(self.frame.values, index=self.frame.index[:-1])

        with tm.assertRaisesRegexp(ValueError, "^Column length"):
            SparseDataFrame(self.frame.values, columns=self.frame.columns[:-1])

    # GH 9272
    def test_constructor_empty(self):
        sp = SparseDataFrame()
        self.assertEqual(len(sp.index), 0)
开发者ID:aechase,项目名称:pandas,代码行数:70,代码来源:test_frame.py

示例4: TestSparseDataFrame

# 需要导入模块: from pandas.sparse.api import SparseDataFrame [as 别名]
# 或者: from pandas.sparse.api.SparseDataFrame import reindex [as 别名]
class TestSparseDataFrame(TestCase, test_frame.SafeForSparse):
    klass = SparseDataFrame

    def setUp(self):
        self.data = {
            "A": [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
            "B": [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
            "C": np.arange(10),
            "D": [0, 1, 2, 3, 4, 5, nan, nan, nan, nan],
        }

        self.dates = DateRange("1/1/2011", periods=10)

        self.frame = SparseDataFrame(self.data, index=self.dates)
        self.iframe = SparseDataFrame(self.data, index=self.dates, default_kind="integer")

        values = self.frame.values.copy()
        values[np.isnan(values)] = 0

        self.zframe = SparseDataFrame(values, columns=["A", "B", "C", "D"], default_fill_value=0, index=self.dates)

        values = self.frame.values.copy()
        values[np.isnan(values)] = 2
        self.fill_frame = SparseDataFrame(values, columns=["A", "B", "C", "D"], default_fill_value=2, index=self.dates)

        self.empty = SparseDataFrame()

    def test_as_matrix(self):
        empty = self.empty.as_matrix()
        self.assert_(empty.shape == (0, 0))

        no_cols = SparseDataFrame(index=np.arange(10))
        mat = no_cols.as_matrix()
        self.assert_(mat.shape == (10, 0))

        no_index = SparseDataFrame(columns=np.arange(10))
        mat = no_index.as_matrix()
        self.assert_(mat.shape == (0, 10))

    def test_copy(self):
        cp = self.frame.copy()
        self.assert_(isinstance(cp, SparseDataFrame))
        assert_sp_frame_equal(cp, self.frame)
        self.assert_(cp.index is self.frame.index)

    def test_constructor(self):
        for col, series in self.frame.iteritems():
            self.assert_(isinstance(series, SparseSeries))

        self.assert_(isinstance(self.iframe["A"].sp_index, IntIndex))

        # constructed zframe from matrix above
        self.assertEquals(self.zframe["A"].fill_value, 0)
        assert_almost_equal([0, 0, 0, 0, 1, 2, 3, 4, 5, 6], self.zframe["A"].values)

        # construct from nested dict
        data = {}
        for c, s in self.frame.iteritems():
            data[c] = s.to_dict()

        sdf = SparseDataFrame(data)
        assert_sp_frame_equal(sdf, self.frame)

        # TODO: test data is copied from inputs

        # init dict with different index
        idx = self.frame.index[:5]
        cons = SparseDataFrame(
            self.frame._series,
            index=idx,
            columns=self.frame.columns,
            default_fill_value=self.frame.default_fill_value,
            default_kind=self.frame.default_kind,
        )
        reindexed = self.frame.reindex(idx)
        assert_sp_frame_equal(cons, reindexed)

        # assert level parameter breaks reindex
        self.assertRaises(Exception, self.frame.reindex, idx, level=0)

    def test_constructor_ndarray(self):
        # no index or columns
        sp = SparseDataFrame(self.frame.values)

        # 1d
        sp = SparseDataFrame(self.data["A"], index=self.dates, columns=["A"])
        assert_sp_frame_equal(sp, self.frame.reindex(columns=["A"]))

        # raise on level argument
        self.assertRaises(Exception, self.frame.reindex, columns=["A"], level=1)

        # wrong length index / columns
        self.assertRaises(Exception, SparseDataFrame, self.frame.values, index=self.frame.index[:-1])
        self.assertRaises(Exception, SparseDataFrame, self.frame.values, columns=self.frame.columns[:-1])

    def test_constructor_empty(self):
        sp = SparseDataFrame()
        self.assert_(len(sp.index) == 0)
        self.assert_(len(sp.columns) == 0)

#.........这里部分代码省略.........
开发者ID:klausz,项目名称:pandas,代码行数:103,代码来源:test_sparse.py


注:本文中的pandas.sparse.api.SparseDataFrame.reindex方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。