本文整理汇总了Python中obspy.core.event.MomentTensor.resource_id方法的典型用法代码示例。如果您正苦于以下问题:Python MomentTensor.resource_id方法的具体用法?Python MomentTensor.resource_id怎么用?Python MomentTensor.resource_id使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类obspy.core.event.MomentTensor
的用法示例。
在下文中一共展示了MomentTensor.resource_id方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _read_ndk
# 需要导入模块: from obspy.core.event import MomentTensor [as 别名]
# 或者: from obspy.core.event.MomentTensor import resource_id [as 别名]
def _read_ndk(filename, *args, **kwargs): # @UnusedVariable
"""
Reads an NDK file to a :class:`~obspy.core.event.Catalog` object.
:param filename: File or file-like object in text mode.
"""
# Read the whole file at once. While an iterator would be more efficient
# the largest NDK file out in the wild is 13.7 MB so it does not matter
# much.
if not hasattr(filename, "read"):
# Check if it exists, otherwise assume its a string.
try:
with open(filename, "rt") as fh:
data = fh.read()
except:
try:
data = filename.decode()
except:
data = str(filename)
data = data.strip()
else:
data = filename.read()
if hasattr(data, "decode"):
data = data.decode()
# Create iterator that yields lines.
def lines_iter():
prev_line = -1
while True:
next_line = data.find("\n", prev_line + 1)
if next_line < 0:
break
yield data[prev_line + 1: next_line]
prev_line = next_line
if len(data) > prev_line + 1:
yield data[prev_line + 1:]
# Use one Flinn Engdahl object for all region determinations.
fe = FlinnEngdahl()
cat = Catalog(resource_id=_get_resource_id("catalog", str(uuid.uuid4())))
# Loop over 5 lines at once.
for _i, lines in enumerate(itertools.zip_longest(*[lines_iter()] * 5)):
if None in lines:
msg = "Skipped last %i lines. Not a multiple of 5 lines." % (
lines.count(None))
warnings.warn(msg, ObsPyNDKWarning)
continue
# Parse the lines to a human readable dictionary.
try:
record = _read_lines(*lines)
except (ValueError, ObsPyNDKException):
exc = traceback.format_exc()
msg = (
"Could not parse event %i (faulty file?). Will be "
"skipped. Lines of the event:\n"
"\t%s\n"
"%s") % (_i + 1, "\n\t".join(lines), exc)
warnings.warn(msg, ObsPyNDKWarning)
continue
# Use one creation info for essentially every item.
creation_info = CreationInfo(
agency_id="GCMT",
version=record["version_code"]
)
# Use the ObsPy Flinn Engdahl region determiner as the region in the
# NDK files is oftentimes trimmed.
region = fe.get_region(record["centroid_longitude"],
record["centroid_latitude"])
# Create an event object.
event = Event(
force_resource_id=False,
event_type="earthquake",
event_type_certainty="known",
event_descriptions=[
EventDescription(text=region, type="Flinn-Engdahl region"),
EventDescription(text=record["cmt_event_name"],
type="earthquake name")
]
)
# Assemble the time for the reference origin.
try:
time = _parse_date_time(record["date"], record["time"])
except ObsPyNDKException:
msg = ("Invalid time in event %i. '%s' and '%s' cannot be "
"assembled to a valid time. Event will be skipped.") % \
(_i + 1, record["date"], record["time"])
warnings.warn(msg, ObsPyNDKWarning)
continue
# Create two origins, one with the reference latitude/longitude and
# one with the centroidal values.
ref_origin = Origin(
force_resource_id=False,
time=time,
#.........这里部分代码省略.........
示例2: __read_single_fnetmt_entry
# 需要导入模块: from obspy.core.event import MomentTensor [as 别名]
# 或者: from obspy.core.event.MomentTensor import resource_id [as 别名]
def __read_single_fnetmt_entry(line, **kwargs):
"""
Reads a single F-net moment tensor solution to a
:class:`~obspy.core.event.Event` object.
:param line: String containing moment tensor information.
:type line: str.
"""
a = line.split()
try:
ot = UTCDateTime().strptime(a[0], '%Y/%m/%d,%H:%M:%S.%f')
except ValueError:
ot = UTCDateTime().strptime(a[0], '%Y/%m/%d,%H:%M:%S')
lat, lon, depjma, magjma = map(float, a[1:5])
depjma *= 1000
region = a[5]
strike = tuple(map(int, a[6].split(';')))
dip = tuple(map(int, a[7].split(';')))
rake = tuple(map(int, a[8].split(';')))
mo = float(a[9])
depmt = float(a[10]) * 1000
magmt = float(a[11])
var_red = float(a[12])
mxx, mxy, mxz, myy, myz, mzz, unit = map(float, a[13:20])
event_name = util.gen_sc3_id(ot)
e = Event(event_type="earthquake")
e.resource_id = _get_resource_id(event_name, 'event')
# Standard JMA solution
o_jma = Origin(time=ot, latitude=lat, longitude=lon,
depth=depjma, depth_type="from location",
region=region)
o_jma.resource_id = _get_resource_id(event_name,
'origin', 'JMA')
m_jma = Magnitude(mag=magjma, magnitude_type='ML',
origin_id=o_jma.resource_id)
m_jma.resource_id = _get_resource_id(event_name,
'magnitude', 'JMA')
# MT solution
o_mt = Origin(time=ot, latitude=lat, longitude=lon,
depth=depmt, region=region,
depth_type="from moment tensor inversion")
o_mt.resource_id = _get_resource_id(event_name,
'origin', 'MT')
m_mt = Magnitude(mag=magmt, magnitude_type='Mw',
origin_id=o_mt.resource_id)
m_mt.resource_id = _get_resource_id(event_name,
'magnitude', 'MT')
foc_mec = FocalMechanism(triggering_origin_id=o_jma.resource_id)
foc_mec.resource_id = _get_resource_id(event_name,
"focal_mechanism")
nod1 = NodalPlane(strike=strike[0], dip=dip[0], rake=rake[0])
nod2 = NodalPlane(strike=strike[1], dip=dip[1], rake=rake[1])
nod = NodalPlanes(nodal_plane_1=nod1, nodal_plane_2=nod2)
foc_mec.nodal_planes = nod
tensor = Tensor(m_rr=mxx, m_tt=myy, m_pp=mzz, m_rt=mxy, m_rp=mxz, m_tp=myz)
cm = Comment(text="Basis system: North,East,Down (Jost and \
Herrmann 1989")
cm.resource_id = _get_resource_id(event_name, 'comment', 'mt')
mt = MomentTensor(derived_origin_id=o_mt.resource_id,
moment_magnitude_id=m_mt.resource_id,
scalar_moment=mo, comments=[cm],
tensor=tensor, variance_reduction=var_red)
mt.resource_id = _get_resource_id(event_name,
'moment_tensor')
foc_mec.moment_tensor = mt
e.origins = [o_jma, o_mt]
e.magnitudes = [m_jma, m_mt]
e.focal_mechanisms = [foc_mec]
e.preferred_magnitude_id = m_mt.resource_id.id
e.preferred_origin_id = o_mt.resource_id.id
e.preferred_focal_mechanism_id = foc_mec.resource_id.id
return e
示例3: build
# 需要导入模块: from obspy.core.event import MomentTensor [as 别名]
# 或者: from obspy.core.event.MomentTensor import resource_id [as 别名]
def build(self):
"""
Build an obspy moment tensor focal mech event
This makes the tensor output into an Event containing:
1) a FocalMechanism with a MomentTensor, NodalPlanes, and PrincipalAxes
2) a Magnitude of the Mw from the Tensor
Which is what we want for outputting QuakeML using
the (slightly modified) obspy code.
Input
-----
filehandle => open file OR str from filehandle.read()
Output
------
event => instance of Event() class as described above
"""
p = self.parser
event = Event(event_type='earthquake')
origin = Origin()
focal_mech = FocalMechanism()
nodal_planes = NodalPlanes()
moment_tensor = MomentTensor()
principal_ax = PrincipalAxes()
magnitude = Magnitude()
data_used = DataUsed()
creation_info = CreationInfo(agency_id='NN')
ev_mode = 'automatic'
ev_stat = 'preliminary'
evid = None
orid = None
# Parse the entire file line by line.
for n,l in enumerate(p.line):
if 'REVIEWED BY NSL STAFF' in l:
ev_mode = 'manual'
ev_stat = 'reviewed'
if 'Event ID' in l:
evid = p._id(n)
if 'Origin ID' in l:
orid = p._id(n)
if 'Ichinose' in l:
moment_tensor.category = 'regional'
if re.match(r'^\d{4}\/\d{2}\/\d{2}', l):
ev = p._event_info(n)
if 'Depth' in l:
derived_depth = p._depth(n)
if 'Mw' in l:
magnitude.mag = p._mw(n)
magnitude.magnitude_type = 'Mw'
if 'Mo' in l and 'dyne' in l:
moment_tensor.scalar_moment = p._mo(n)
if 'Percent Double Couple' in l:
moment_tensor.double_couple = p._percent(n)
if 'Percent CLVD' in l:
moment_tensor.clvd = p._percent(n)
if 'Epsilon' in l:
moment_tensor.variance = p._epsilon(n)
if 'Percent Variance Reduction' in l:
moment_tensor.variance_reduction = p._percent(n)
if 'Major Double Couple' in l and 'strike' in p.line[n+1]:
np = p._double_couple(n)
nodal_planes.nodal_plane_1 = NodalPlane(*np[0])
nodal_planes.nodal_plane_2 = NodalPlane(*np[1])
nodal_planes.preferred_plane = 1
if 'Spherical Coordinates' in l:
mt = p._mt_sphere(n)
moment_tensor.tensor = Tensor(
m_rr = mt['Mrr'],
m_tt = mt['Mtt'],
m_pp = mt['Mff'],
m_rt = mt['Mrt'],
m_rp = mt['Mrf'],
m_tp = mt['Mtf'],
)
if 'Eigenvalues and eigenvectors of the Major Double Couple' in l:
ax = p._vectors(n)
principal_ax.t_axis = Axis(ax['T']['trend'], ax['T']['plunge'], ax['T']['ev'])
principal_ax.p_axis = Axis(ax['P']['trend'], ax['P']['plunge'], ax['P']['ev'])
principal_ax.n_axis = Axis(ax['N']['trend'], ax['N']['plunge'], ax['N']['ev'])
if 'Number of Stations' in l:
data_used.station_count = p._number_of_stations(n)
if 'Maximum' in l and 'Gap' in l:
focal_mech.azimuthal_gap = p._gap(n)
if re.match(r'^Date', l):
creation_info.creation_time = p._creation_time(n)
# Creation Time
creation_info.version = orid
# Fill in magnitude values
magnitude.evaluation_mode = ev_mode
magnitude.evaluation_status = ev_stat
magnitude.creation_info = creation_info.copy()
magnitude.resource_id = self._rid(magnitude)
# Stub origin
origin.time = ev.get('time')
origin.latitude = ev.get('lat')
origin.longitude = ev.get('lon')
origin.depth = derived_depth * 1000.
origin.depth_type = "from moment tensor inversion"
#.........这里部分代码省略.........
示例4: _parse_record_dp
# 需要导入模块: from obspy.core.event import MomentTensor [as 别名]
# 或者: from obspy.core.event.MomentTensor import resource_id [as 别名]
def _parse_record_dp(self, line, event):
"""
Parses the 'source parameter data - primary' record Dp
"""
source_contributor = line[2:6].strip()
computation_type = line[6]
exponent = self._int_zero(line[7])
scale = math.pow(10, exponent)
centroid_origin_time = line[8:14] + '.' + line[14]
orig_time_stderr = line[15:17]
if orig_time_stderr == 'FX':
orig_time_stderr = 'Fixed'
else:
orig_time_stderr = \
self._float_with_format(orig_time_stderr, '2.1', scale)
centroid_latitude = self._float_with_format(line[17:21], '4.2')
lat_type = line[21]
if centroid_latitude is not None:
centroid_latitude *= self._coordinate_sign(lat_type)
lat_stderr = line[22:25]
if lat_stderr == 'FX':
lat_stderr = 'Fixed'
else:
lat_stderr = self._float_with_format(lat_stderr, '3.2', scale)
centroid_longitude = self._float_with_format(line[25:30], '5.2')
lon_type = line[30]
if centroid_longitude is not None:
centroid_longitude *= self._coordinate_sign(lon_type)
lon_stderr = line[31:34]
if lon_stderr == 'FX':
lon_stderr = 'Fixed'
else:
lon_stderr = self._float_with_format(lon_stderr, '3.2', scale)
centroid_depth = self._float_with_format(line[34:38], '4.1')
depth_stderr = line[38:40]
if depth_stderr == 'FX' or depth_stderr == 'BD':
depth_stderr = 'Fixed'
else:
depth_stderr = self._float_with_format(depth_stderr, '2.1', scale)
station_number = self._int_zero(line[40:43])
component_number = self._int_zero(line[43:46])
station_number2 = self._int_zero(line[46:48])
component_number2 = self._int_zero(line[48:51])
# unused: half_duration = self._float_with_format(line[51:54], '3.1')
moment = self._float_with_format(line[54:56], '2.1')
moment_stderr = self._float_with_format(line[56:58], '2.1')
moment_exponent = self._int(line[58:60])
if (moment is not None) and (moment_exponent is not None):
moment *= math.pow(10, moment_exponent)
if (moment_stderr is not None) and (moment_exponent is not None):
moment_stderr *= math.pow(10, moment_exponent)
evid = event.resource_id.id.split('/')[-1]
# Create a new origin only if centroid time is defined:
origin = None
if centroid_origin_time.strip() != '.':
origin = Origin()
res_id = '/'.join((res_id_prefix, 'origin',
evid, source_contributor.lower(),
'mw' + computation_type.lower()))
origin.resource_id = ResourceIdentifier(id=res_id)
origin.creation_info = \
CreationInfo(agency_id=source_contributor)
date = event.origins[0].time.strftime('%Y%m%d')
origin.time = UTCDateTime(date + centroid_origin_time)
# Check if centroid time is on the next day:
if origin.time < event.origins[0].time:
origin.time += timedelta(days=1)
self._store_uncertainty(origin.time_errors, orig_time_stderr)
origin.latitude = centroid_latitude
origin.longitude = centroid_longitude
origin.depth = centroid_depth * 1000
if lat_stderr == 'Fixed' and lon_stderr == 'Fixed':
origin.epicenter_fixed = True
else:
self._store_uncertainty(origin.latitude_errors,
self._lat_err_to_deg(lat_stderr))
self._store_uncertainty(origin.longitude_errors,
self._lon_err_to_deg(lon_stderr,
origin.latitude))
if depth_stderr == 'Fixed':
origin.depth_type = 'operator assigned'
else:
origin.depth_type = 'from location'
self._store_uncertainty(origin.depth_errors,
depth_stderr, scale=1000)
quality = OriginQuality()
quality.used_station_count = \
station_number + station_number2
quality.used_phase_count = \
component_number + component_number2
origin.quality = quality
origin.origin_type = 'centroid'
event.origins.append(origin)
focal_mechanism = FocalMechanism()
res_id = '/'.join((res_id_prefix, 'focalmechanism',
evid, source_contributor.lower(),
'mw' + computation_type.lower()))
focal_mechanism.resource_id = ResourceIdentifier(id=res_id)
focal_mechanism.creation_info = \
#.........这里部分代码省略.........
示例5: _parseRecordDp
# 需要导入模块: from obspy.core.event import MomentTensor [as 别名]
# 或者: from obspy.core.event.MomentTensor import resource_id [as 别名]
def _parseRecordDp(self, line, event):
"""
Parses the 'source parameter data - primary' record Dp
"""
source_contributor = line[2:6].strip()
computation_type = line[6]
exponent = self._intZero(line[7])
scale = math.pow(10, exponent)
centroid_origin_time = line[8:14] + "." + line[14]
orig_time_stderr = line[15:17]
if orig_time_stderr == "FX":
orig_time_stderr = "Fixed"
else:
orig_time_stderr = self._floatWithFormat(orig_time_stderr, "2.1", scale)
centroid_latitude = self._floatWithFormat(line[17:21], "4.2")
lat_type = line[21]
if centroid_latitude is not None:
centroid_latitude *= self._coordinateSign(lat_type)
lat_stderr = line[22:25]
if lat_stderr == "FX":
lat_stderr = "Fixed"
else:
lat_stderr = self._floatWithFormat(lat_stderr, "3.2", scale)
centroid_longitude = self._floatWithFormat(line[25:30], "5.2")
lon_type = line[30]
if centroid_longitude is not None:
centroid_longitude *= self._coordinateSign(lon_type)
lon_stderr = line[31:34]
if lon_stderr == "FX":
lon_stderr = "Fixed"
else:
lon_stderr = self._floatWithFormat(lon_stderr, "3.2", scale)
centroid_depth = self._floatWithFormat(line[34:38], "4.1")
depth_stderr = line[38:40]
if depth_stderr == "FX" or depth_stderr == "BD":
depth_stderr = "Fixed"
else:
depth_stderr = self._floatWithFormat(depth_stderr, "2.1", scale)
station_number = self._intZero(line[40:43])
component_number = self._intZero(line[43:46])
station_number2 = self._intZero(line[46:48])
component_number2 = self._intZero(line[48:51])
# unused: half_duration = self._floatWithFormat(line[51:54], '3.1')
moment = self._floatWithFormat(line[54:56], "2.1")
moment_stderr = self._floatWithFormat(line[56:58], "2.1")
moment_exponent = self._int(line[58:60])
if (moment is not None) and (moment_exponent is not None):
moment *= math.pow(10, moment_exponent)
if (moment_stderr is not None) and (moment_exponent is not None):
moment_stderr *= math.pow(10, moment_exponent)
evid = event.resource_id.id.split("/")[-1]
# Create a new origin only if centroid time is defined:
origin = None
if centroid_origin_time.strip() != ".":
origin = Origin()
res_id = "/".join(
(res_id_prefix, "origin", evid, source_contributor.lower(), "mw" + computation_type.lower())
)
origin.resource_id = ResourceIdentifier(id=res_id)
origin.creation_info = CreationInfo(agency_id=source_contributor)
date = event.origins[0].time.strftime("%Y%m%d")
origin.time = UTCDateTime(date + centroid_origin_time)
# Check if centroid time is on the next day:
if origin.time < event.origins[0].time:
origin.time += timedelta(days=1)
self._storeUncertainty(origin.time_errors, orig_time_stderr)
origin.latitude = centroid_latitude
origin.longitude = centroid_longitude
origin.depth = centroid_depth * 1000
if lat_stderr == "Fixed" and lon_stderr == "Fixed":
origin.epicenter_fixed = True
else:
self._storeUncertainty(origin.latitude_errors, self._latErrToDeg(lat_stderr))
self._storeUncertainty(origin.longitude_errors, self._lonErrToDeg(lon_stderr, origin.latitude))
if depth_stderr == "Fixed":
origin.depth_type = "operator assigned"
else:
origin.depth_type = "from location"
self._storeUncertainty(origin.depth_errors, depth_stderr, scale=1000)
quality = OriginQuality()
quality.used_station_count = station_number + station_number2
quality.used_phase_count = component_number + component_number2
origin.quality = quality
origin.type = "centroid"
event.origins.append(origin)
focal_mechanism = FocalMechanism()
res_id = "/".join(
(res_id_prefix, "focalmechanism", evid, source_contributor.lower(), "mw" + computation_type.lower())
)
focal_mechanism.resource_id = ResourceIdentifier(id=res_id)
focal_mechanism.creation_info = CreationInfo(agency_id=source_contributor)
moment_tensor = MomentTensor()
if origin is not None:
moment_tensor.derived_origin_id = origin.resource_id
else:
# this is required for QuakeML validation:
res_id = "/".join((res_id_prefix, "no-origin"))
moment_tensor.derived_origin_id = ResourceIdentifier(id=res_id)
for mag in event.magnitudes:
#.........这里部分代码省略.........