当前位置: 首页>>代码示例>>Python>>正文


Python event.MomentTensor类代码示例

本文整理汇总了Python中obspy.core.event.MomentTensor的典型用法代码示例。如果您正苦于以下问题:Python MomentTensor类的具体用法?Python MomentTensor怎么用?Python MomentTensor使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了MomentTensor类的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: event_to_quakeml

def event_to_quakeml(event, filename):
    """
    Write one of those events to QuakeML.
    """
    # Create all objects.
    cat = Catalog()
    ev = Event()
    org = Origin()
    mag = Magnitude()
    fm = FocalMechanism()
    mt = MomentTensor()
    t = Tensor()
    # Link them together.
    cat.append(ev)
    ev.origins.append(org)
    ev.magnitudes.append(mag)
    ev.focal_mechanisms.append(fm)
    fm.moment_tensor = mt
    mt.tensor = t

    # Fill values
    ev.resource_id = "smi:inversion/%s" % str(event["identifier"])
    org.time = event["time"]
    org.longitude = event["longitude"]
    org.latitude = event["latitude"]
    org.depth = event["depth_in_km"] * 1000

    mag.mag = event["Mw"]
    mag.magnitude_type = "Mw"

    t.m_rr = event["Mrr"]
    t.m_tt = event["Mpp"]
    t.m_pp = event["Mtt"]
    t.m_rt = event["Mrt"]
    t.m_rp = event["Mrp"]
    t.m_tp = event["Mtp"]

    cat.write(filename, format="quakeml")
开发者ID:Debesys,项目名称:LASIF,代码行数:38,代码来源:event_list_reader.py

示例2: test_creating_minimal_quakeml_with_mt

    def test_creating_minimal_quakeml_with_mt(self):
        """
        Tests the creation of a minimal QuakeML containing origin, magnitude
        and moment tensor.
        """
        # Rotate into physical domain
        lat, lon, depth, org_time = 10.0, -20.0, 12000, UTCDateTime(2012, 1, 1)
        mrr, mtt, mpp, mtr, mpr, mtp = 1E18, 2E18, 3E18, 3E18, 2E18, 1E18
        scalar_moment = math.sqrt(
            mrr ** 2 + mtt ** 2 + mpp ** 2 + mtr ** 2 + mpr ** 2 + mtp ** 2)
        moment_magnitude = 0.667 * (math.log10(scalar_moment) - 9.1)

        # Initialise event
        ev = Event(event_type="earthquake")

        ev_origin = Origin(time=org_time, latitude=lat, longitude=lon,
                           depth=depth, resource_id=ResourceIdentifier())
        ev.origins.append(ev_origin)

        # populate event moment tensor
        ev_tensor = Tensor(m_rr=mrr, m_tt=mtt, m_pp=mpp, m_rt=mtr, m_rp=mpr,
                           m_tp=mtp)

        ev_momenttensor = MomentTensor(tensor=ev_tensor)
        ev_momenttensor.scalar_moment = scalar_moment
        ev_momenttensor.derived_origin_id = ev_origin.resource_id

        ev_focalmechanism = FocalMechanism(moment_tensor=ev_momenttensor)
        ev.focal_mechanisms.append(ev_focalmechanism)

        # populate event magnitude
        ev_magnitude = Magnitude()
        ev_magnitude.mag = moment_magnitude
        ev_magnitude.magnitude_type = 'Mw'
        ev_magnitude.evaluation_mode = 'automatic'
        ev.magnitudes.append(ev_magnitude)

        # write QuakeML file
        cat = Catalog(events=[ev])
        memfile = io.BytesIO()
        cat.write(memfile, format="quakeml", validate=IS_RECENT_LXML)

        memfile.seek(0, 0)
        new_cat = _read_quakeml(memfile)
        self.assertEqual(len(new_cat), 1)
        event = new_cat[0]
        self.assertEqual(len(event.origins), 1)
        self.assertEqual(len(event.magnitudes), 1)
        self.assertEqual(len(event.focal_mechanisms), 1)
        org = event.origins[0]
        mag = event.magnitudes[0]
        fm = event.focal_mechanisms[0]
        self.assertEqual(org.latitude, lat)
        self.assertEqual(org.longitude, lon)
        self.assertEqual(org.depth, depth)
        self.assertEqual(org.time, org_time)
        # Moment tensor.
        mt = fm.moment_tensor.tensor
        self.assertTrue((fm.moment_tensor.scalar_moment - scalar_moment) /
                        scalar_moment < scalar_moment * 1E-10)
        self.assertEqual(mt.m_rr, mrr)
        self.assertEqual(mt.m_pp, mpp)
        self.assertEqual(mt.m_tt, mtt)
        self.assertEqual(mt.m_rt, mtr)
        self.assertEqual(mt.m_rp, mpr)
        self.assertEqual(mt.m_tp, mtp)
        # Mag
        self.assertAlmostEqual(mag.mag, moment_magnitude)
        self.assertEqual(mag.magnitude_type, "Mw")
        self.assertEqual(mag.evaluation_mode, "automatic")
开发者ID:Brtle,项目名称:obspy,代码行数:70,代码来源:test_quakeml.py

示例3: _read_ndk


#.........这里部分代码省略.........
            comments=[Comment(
                force_resource_id=False,
                text="Reported magnitude in NDK file. Most likely 'mb'."
            )]
        ))
        event.magnitudes[-1].comments[-1].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="mb_magnitude")
        event.magnitudes[-1].resource_id = _get_resource_id(
            record["cmt_event_name"], "magnitude", tag="mb")

        event.magnitudes.append(Magnitude(
            force_resource_id=False,
            mag=record["MS"],
            magnitude_type="MS",
            comments=[Comment(
                force_resource_id=False,
                text="Reported magnitude in NDK file. Most likely 'MS'."
            )]
        ))
        event.magnitudes[-1].comments[-1].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="MS_magnitude")
        event.magnitudes[-1].resource_id = _get_resource_id(
            record["cmt_event_name"], "magnitude", tag="MS")

        # Take care of the moment tensor.
        tensor = Tensor(
            m_rr=record["m_rr"],
            m_rr_errors={"uncertainty": record["m_rr_error"]},
            m_pp=record["m_pp"],
            m_pp_errors={"uncertainty": record["m_pp_error"]},
            m_tt=record["m_tt"],
            m_tt_errors={"uncertainty": record["m_tt_error"]},
            m_rt=record["m_rt"],
            m_rt_errors={"uncertainty": record["m_rt_error"]},
            m_rp=record["m_rp"],
            m_rp_errors={"uncertainty": record["m_rp_error"]},
            m_tp=record["m_tp"],
            m_tp_errors={"uncertainty": record["m_tp_error"]},
            creation_info=creation_info.copy()
        )
        mt = MomentTensor(
            force_resource_id=False,
            scalar_moment=record["scalar_moment"],
            tensor=tensor,
            data_used=[DataUsed(**i) for i in record["data_used"]],
            inversion_type=record["source_type"],
            source_time_function=SourceTimeFunction(
                type=record["moment_rate_type"],
                duration=record["moment_rate_duration"]
            ),
            derived_origin_id=cmt_origin.resource_id,
            creation_info=creation_info.copy()
        )
        mt.resource_id = _get_resource_id(record["cmt_event_name"],
                                          "momenttensor")
        axis = [Axis(**i) for i in record["principal_axis"]]
        focmec = FocalMechanism(
            force_resource_id=False,
            moment_tensor=mt,
            principal_axes=PrincipalAxes(
                # The ordering is the same as for the IRIS SPUD service and
                # from a website of the Saint Louis University Earthquake
                # center so it should be correct.
                t_axis=axis[0],
                p_axis=axis[2],
                n_axis=axis[1]
            ),
            nodal_planes=NodalPlanes(
                nodal_plane_1=NodalPlane(**record["nodal_plane_1"]),
                nodal_plane_2=NodalPlane(**record["nodal_plane_2"])
            ),
            comments=[
                Comment(force_resource_id=False,
                        text="CMT Analysis Type: %s" %
                             record["cmt_type"].capitalize()),
                Comment(force_resource_id=False,
                        text="CMT Timestamp: %s" %
                             record["cmt_timestamp"])],
            creation_info=creation_info.copy()
        )
        focmec.comments[0].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="cmt_type")
        focmec.comments[1].resource_id = _get_resource_id(
            record["cmt_event_name"], "comment", tag="cmt_timestamp")
        focmec.resource_id = _get_resource_id(record["cmt_event_name"],
                                              "focal_mechanism")
        event.focal_mechanisms = [focmec]
        event.preferred_focal_mechanism_id = focmec.resource_id.id

        # Set at end to avoid duplicate resource id warning.
        event.resource_id = _get_resource_id(record["cmt_event_name"],
                                             "event")

        cat.append(event)

    if len(cat) == 0:
        msg = "No valid events found in NDK file."
        raise ObsPyNDKException(msg)

    return cat
开发者ID:Qigaoo,项目名称:obspy,代码行数:101,代码来源:core.py

示例4: __read_single_fnetmt_entry

def __read_single_fnetmt_entry(line, **kwargs):
    """
    Reads a single F-net moment tensor solution to a
    :class:`~obspy.core.event.Event` object.

    :param line: String containing moment tensor information.
    :type line: str.
    """

    a = line.split()
    try:
        ot = UTCDateTime().strptime(a[0], '%Y/%m/%d,%H:%M:%S.%f')
    except ValueError:
        ot = UTCDateTime().strptime(a[0], '%Y/%m/%d,%H:%M:%S')
    lat, lon, depjma, magjma = map(float, a[1:5])
    depjma *= 1000
    region = a[5]
    strike = tuple(map(int, a[6].split(';')))
    dip = tuple(map(int, a[7].split(';')))
    rake = tuple(map(int, a[8].split(';')))
    mo = float(a[9])
    depmt = float(a[10]) * 1000
    magmt = float(a[11])
    var_red = float(a[12])
    mxx, mxy, mxz, myy, myz, mzz, unit = map(float, a[13:20])

    event_name = util.gen_sc3_id(ot)
    e = Event(event_type="earthquake")
    e.resource_id = _get_resource_id(event_name, 'event')

    # Standard JMA solution
    o_jma = Origin(time=ot, latitude=lat, longitude=lon,
                   depth=depjma, depth_type="from location",
                   region=region)
    o_jma.resource_id = _get_resource_id(event_name,
                                         'origin', 'JMA')
    m_jma = Magnitude(mag=magjma, magnitude_type='ML',
                      origin_id=o_jma.resource_id)
    m_jma.resource_id = _get_resource_id(event_name,
                                         'magnitude', 'JMA')
    # MT solution
    o_mt = Origin(time=ot, latitude=lat, longitude=lon,
                  depth=depmt, region=region,
                  depth_type="from moment tensor inversion")
    o_mt.resource_id = _get_resource_id(event_name,
                                        'origin', 'MT')
    m_mt = Magnitude(mag=magmt, magnitude_type='Mw',
                     origin_id=o_mt.resource_id)
    m_mt.resource_id = _get_resource_id(event_name,
                                        'magnitude', 'MT')
    foc_mec = FocalMechanism(triggering_origin_id=o_jma.resource_id)
    foc_mec.resource_id = _get_resource_id(event_name,
                                           "focal_mechanism")
    nod1 = NodalPlane(strike=strike[0], dip=dip[0], rake=rake[0])
    nod2 = NodalPlane(strike=strike[1], dip=dip[1], rake=rake[1])
    nod = NodalPlanes(nodal_plane_1=nod1, nodal_plane_2=nod2)
    foc_mec.nodal_planes = nod

    tensor = Tensor(m_rr=mxx, m_tt=myy, m_pp=mzz, m_rt=mxy, m_rp=mxz, m_tp=myz)
    cm = Comment(text="Basis system: North,East,Down (Jost and \
    Herrmann 1989")
    cm.resource_id = _get_resource_id(event_name, 'comment', 'mt')
    mt = MomentTensor(derived_origin_id=o_mt.resource_id,
                      moment_magnitude_id=m_mt.resource_id,
                      scalar_moment=mo, comments=[cm],
                      tensor=tensor, variance_reduction=var_red)
    mt.resource_id = _get_resource_id(event_name,
                                      'moment_tensor')
    foc_mec.moment_tensor = mt
    e.origins = [o_jma, o_mt]
    e.magnitudes = [m_jma, m_mt]
    e.focal_mechanisms = [foc_mec]
    e.preferred_magnitude_id = m_mt.resource_id.id
    e.preferred_origin_id = o_mt.resource_id.id
    e.preferred_focal_mechanism_id = foc_mec.resource_id.id
    return e
开发者ID:adakite,项目名称:obspy,代码行数:76,代码来源:fnetmt.py

示例5: _parse_record_dp


#.........这里部分代码省略.........
            origin = Origin()
            res_id = '/'.join((res_id_prefix, 'origin',
                               evid, source_contributor.lower(),
                               'mw' + computation_type.lower()))
            origin.resource_id = ResourceIdentifier(id=res_id)
            origin.creation_info = \
                CreationInfo(agency_id=source_contributor)
            date = event.origins[0].time.strftime('%Y%m%d')
            origin.time = UTCDateTime(date + centroid_origin_time)
            # Check if centroid time is on the next day:
            if origin.time < event.origins[0].time:
                origin.time += timedelta(days=1)
            self._store_uncertainty(origin.time_errors, orig_time_stderr)
            origin.latitude = centroid_latitude
            origin.longitude = centroid_longitude
            origin.depth = centroid_depth * 1000
            if lat_stderr == 'Fixed' and lon_stderr == 'Fixed':
                origin.epicenter_fixed = True
            else:
                self._store_uncertainty(origin.latitude_errors,
                                        self._lat_err_to_deg(lat_stderr))
                self._store_uncertainty(origin.longitude_errors,
                                        self._lon_err_to_deg(lon_stderr,
                                                             origin.latitude))
            if depth_stderr == 'Fixed':
                origin.depth_type = 'operator assigned'
            else:
                origin.depth_type = 'from location'
                self._store_uncertainty(origin.depth_errors,
                                        depth_stderr, scale=1000)
            quality = OriginQuality()
            quality.used_station_count = \
                station_number + station_number2
            quality.used_phase_count = \
                component_number + component_number2
            origin.quality = quality
            origin.origin_type = 'centroid'
            event.origins.append(origin)
        focal_mechanism = FocalMechanism()
        res_id = '/'.join((res_id_prefix, 'focalmechanism',
                           evid, source_contributor.lower(),
                           'mw' + computation_type.lower()))
        focal_mechanism.resource_id = ResourceIdentifier(id=res_id)
        focal_mechanism.creation_info = \
            CreationInfo(agency_id=source_contributor)
        moment_tensor = MomentTensor()
        if origin is not None:
            moment_tensor.derived_origin_id = origin.resource_id
        else:
            # this is required for QuakeML validation:
            res_id = '/'.join((res_id_prefix, 'no-origin'))
            moment_tensor.derived_origin_id = \
                ResourceIdentifier(id=res_id)
        for mag in event.magnitudes:
            if mag.creation_info.agency_id == source_contributor:
                moment_tensor.moment_magnitude_id = mag.resource_id
        res_id = '/'.join((res_id_prefix, 'momenttensor',
                           evid, source_contributor.lower(),
                           'mw' + computation_type.lower()))
        moment_tensor.resource_id = ResourceIdentifier(id=res_id)
        moment_tensor.scalar_moment = moment
        self._store_uncertainty(moment_tensor.scalar_moment_errors,
                                moment_stderr)
        data_used = DataUsed()
        data_used.station_count = station_number + station_number2
        data_used.component_count = component_number + component_number2
        if computation_type == 'C':
            res_id = '/'.join((res_id_prefix, 'methodID=CMT'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            # CMT algorithm uses long-period body waves,
            # very-long-period surface waves and
            # intermediate period surface waves (since 2004
            # for shallow and intermediate-depth earthquakes
            # --Ekstrom et al., 2012)
            data_used.wave_type = 'combined'
        if computation_type == 'M':
            res_id = '/'.join((res_id_prefix, 'methodID=moment_tensor'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            # FIXME: not sure which kind of data is used by
            # "moment tensor" algorithm.
            data_used.wave_type = 'unknown'
        elif computation_type == 'B':
            res_id = '/'.join((res_id_prefix, 'methodID=broadband_data'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            # FIXME: is 'combined' correct here?
            data_used.wave_type = 'combined'
        elif computation_type == 'F':
            res_id = '/'.join((res_id_prefix, 'methodID=P-wave_first_motion'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            data_used.wave_type = 'P waves'
        elif computation_type == 'S':
            res_id = '/'.join((res_id_prefix, 'methodID=scalar_moment'))
            focal_mechanism.method_id = ResourceIdentifier(id=res_id)
            # FIXME: not sure which kind of data is used
            # for scalar moment determination.
            data_used.wave_type = 'unknown'
        moment_tensor.data_used = [data_used]
        focal_mechanism.moment_tensor = moment_tensor
        event.focal_mechanisms.append(focal_mechanism)
        return focal_mechanism
开发者ID:bonaime,项目名称:obspy,代码行数:101,代码来源:mchedr.py

示例6: par2quakeml

def par2quakeml(Par_filename, QuakeML_filename, rotation_axis=[0.0, 1.0, 0.0],
                rotation_angle=-57.5, origin_time="2000-01-01 00:00:00.0",
                event_type="other event"):
    # initialise event
    ev = Event()

    # open and read Par file
    fid = open(Par_filename, 'r')

    fid.readline()
    fid.readline()
    fid.readline()
    fid.readline()

    lat_old = 90.0 - float(fid.readline().strip().split()[0])
    lon_old = float(fid.readline().strip().split()[0])
    depth = float(fid.readline().strip().split()[0])

    fid.readline()

    Mtt_old = float(fid.readline().strip().split()[0])
    Mpp_old = float(fid.readline().strip().split()[0])
    Mrr_old = float(fid.readline().strip().split()[0])
    Mtp_old = float(fid.readline().strip().split()[0])
    Mtr_old = float(fid.readline().strip().split()[0])
    Mpr_old = float(fid.readline().strip().split()[0])

    # rotate event into physical domain

    lat, lon = rot.rotate_lat_lon(lat_old, lon_old, rotation_axis,
                                  rotation_angle)
    Mrr, Mtt, Mpp, Mtr, Mpr, Mtp = rot.rotate_moment_tensor(
        Mrr_old, Mtt_old, Mpp_old, Mtr_old, Mpr_old, Mtp_old, lat_old, lon_old,
        rotation_axis, rotation_angle)

    # populate event origin data
    ev.event_type = event_type

    ev_origin = Origin()
    ev_origin.time = UTCDateTime(origin_time)
    ev_origin.latitude = lat
    ev_origin.longitude = lon
    ev_origin.depth = depth
    ev.origins.append(ev_origin)

    # populte event moment tensor

    ev_tensor = Tensor()
    ev_tensor.m_rr = Mrr
    ev_tensor.m_tt = Mtt
    ev_tensor.m_pp = Mpp
    ev_tensor.m_rt = Mtr
    ev_tensor.m_rp = Mpr
    ev_tensor.m_tp = Mtp

    ev_momenttensor = MomentTensor()
    ev_momenttensor.tensor = ev_tensor
    ev_momenttensor.scalar_moment = np.sqrt(Mrr ** 2 + Mtt ** 2 + Mpp ** 2 +
                                            Mtr ** 2 + Mpr ** 2 + Mtp ** 2)

    ev_focalmechanism = FocalMechanism()
    ev_focalmechanism.moment_tensor = ev_momenttensor
    ev_focalmechanism.nodal_planes = NodalPlanes().setdefault(0, 0)

    ev.focal_mechanisms.append(ev_focalmechanism)

    # populate event magnitude
    ev_magnitude = Magnitude()
    ev_magnitude.mag = 0.667 * (np.log10(ev_momenttensor.scalar_moment) - 9.1)
    ev_magnitude.magnitude_type = 'Mw'
    ev.magnitudes.append(ev_magnitude)

    # write QuakeML file
    cat = Catalog()
    cat.append(ev)
    cat.write(QuakeML_filename, format="quakeml")

    # clean up
    fid.close()
开发者ID:Debesys,项目名称:LASIF,代码行数:79,代码来源:par2quakeml.py

示例7: build

    def build(self):
        """
        Build an obspy moment tensor focal mech event

        This makes the tensor output into an Event containing:
        1) a FocalMechanism with a MomentTensor, NodalPlanes, and PrincipalAxes
        2) a Magnitude of the Mw from the Tensor

        Which is what we want for outputting QuakeML using
        the (slightly modified) obspy code.

        Input
        -----
        filehandle => open file OR str from filehandle.read()

        Output
        ------
        event => instance of Event() class as described above
        """
        p = self.parser
        event         = Event(event_type='earthquake')
        origin        = Origin()
        focal_mech    = FocalMechanism()
        nodal_planes  = NodalPlanes()
        moment_tensor = MomentTensor()
        principal_ax  = PrincipalAxes()
        magnitude     = Magnitude()
        data_used     = DataUsed()
        creation_info = CreationInfo(agency_id='NN')
        ev_mode = 'automatic'
        ev_stat = 'preliminary'
        evid = None
        orid = None
        # Parse the entire file line by line.
        for n,l in enumerate(p.line):
            if 'REVIEWED BY NSL STAFF' in l:
                ev_mode = 'manual'
                ev_stat = 'reviewed'
            if 'Event ID' in l:
                evid = p._id(n)
            if 'Origin ID' in l:
                orid = p._id(n)
            if 'Ichinose' in l:
                moment_tensor.category = 'regional'
            if re.match(r'^\d{4}\/\d{2}\/\d{2}', l):
                ev = p._event_info(n)
            if 'Depth' in l:
                derived_depth = p._depth(n)
            if 'Mw' in l:
                magnitude.mag = p._mw(n) 
                magnitude.magnitude_type = 'Mw'
            if 'Mo' in l and 'dyne' in l:
                moment_tensor.scalar_moment = p._mo(n)
            if 'Percent Double Couple' in l:
                moment_tensor.double_couple = p._percent(n)
            if 'Percent CLVD' in l:
                moment_tensor.clvd = p._percent(n)
            if 'Epsilon' in l:
                moment_tensor.variance = p._epsilon(n)
            if 'Percent Variance Reduction' in l:
                moment_tensor.variance_reduction = p._percent(n)
            if 'Major Double Couple' in l and 'strike' in p.line[n+1]:
                np = p._double_couple(n)
                nodal_planes.nodal_plane_1 = NodalPlane(*np[0])
                nodal_planes.nodal_plane_2 = NodalPlane(*np[1])
                nodal_planes.preferred_plane = 1
            if 'Spherical Coordinates' in l:
                mt = p._mt_sphere(n)
                moment_tensor.tensor = Tensor(
                    m_rr = mt['Mrr'],
                    m_tt = mt['Mtt'],
                    m_pp = mt['Mff'],
                    m_rt = mt['Mrt'],
                    m_rp = mt['Mrf'],
                    m_tp = mt['Mtf'],
                    )
            if 'Eigenvalues and eigenvectors of the Major Double Couple' in l:
                ax = p._vectors(n)
                principal_ax.t_axis = Axis(ax['T']['trend'], ax['T']['plunge'], ax['T']['ev'])
                principal_ax.p_axis = Axis(ax['P']['trend'], ax['P']['plunge'], ax['P']['ev'])
                principal_ax.n_axis = Axis(ax['N']['trend'], ax['N']['plunge'], ax['N']['ev'])
            if 'Number of Stations' in l:
                data_used.station_count = p._number_of_stations(n)
            if 'Maximum' in l and 'Gap' in l:
                focal_mech.azimuthal_gap = p._gap(n)
            if re.match(r'^Date', l):
                creation_info.creation_time = p._creation_time(n)
        # Creation Time
        creation_info.version = orid
        # Fill in magnitude values
        magnitude.evaluation_mode = ev_mode
        magnitude.evaluation_status = ev_stat
        magnitude.creation_info = creation_info.copy()
        magnitude.resource_id = self._rid(magnitude)
        # Stub origin
        origin.time = ev.get('time')
        origin.latitude = ev.get('lat')
        origin.longitude = ev.get('lon')
        origin.depth = derived_depth * 1000.
        origin.depth_type = "from moment tensor inversion"
#.........这里部分代码省略.........
开发者ID:NVSeismoLab,项目名称:commons,代码行数:101,代码来源:ichinose.py

示例8: _parseRecordDp

    def _parseRecordDp(self, line, event):
        """
        Parses the 'source parameter data - primary' record Dp
        """
        source_contributor = line[2:6].strip()
        computation_type = line[6]
        exponent = self._intZero(line[7])
        scale = math.pow(10, exponent)
        centroid_origin_time = line[8:14] + "." + line[14]
        orig_time_stderr = line[15:17]
        if orig_time_stderr == "FX":
            orig_time_stderr = "Fixed"
        else:
            orig_time_stderr = self._floatWithFormat(orig_time_stderr, "2.1", scale)
        centroid_latitude = self._floatWithFormat(line[17:21], "4.2")
        lat_type = line[21]
        if centroid_latitude is not None:
            centroid_latitude *= self._coordinateSign(lat_type)
        lat_stderr = line[22:25]
        if lat_stderr == "FX":
            lat_stderr = "Fixed"
        else:
            lat_stderr = self._floatWithFormat(lat_stderr, "3.2", scale)
        centroid_longitude = self._floatWithFormat(line[25:30], "5.2")
        lon_type = line[30]
        if centroid_longitude is not None:
            centroid_longitude *= self._coordinateSign(lon_type)
        lon_stderr = line[31:34]
        if lon_stderr == "FX":
            lon_stderr = "Fixed"
        else:
            lon_stderr = self._floatWithFormat(lon_stderr, "3.2", scale)
        centroid_depth = self._floatWithFormat(line[34:38], "4.1")
        depth_stderr = line[38:40]
        if depth_stderr == "FX" or depth_stderr == "BD":
            depth_stderr = "Fixed"
        else:
            depth_stderr = self._floatWithFormat(depth_stderr, "2.1", scale)
        station_number = self._intZero(line[40:43])
        component_number = self._intZero(line[43:46])
        station_number2 = self._intZero(line[46:48])
        component_number2 = self._intZero(line[48:51])
        # unused: half_duration = self._floatWithFormat(line[51:54], '3.1')
        moment = self._floatWithFormat(line[54:56], "2.1")
        moment_stderr = self._floatWithFormat(line[56:58], "2.1")
        moment_exponent = self._int(line[58:60])
        if (moment is not None) and (moment_exponent is not None):
            moment *= math.pow(10, moment_exponent)
        if (moment_stderr is not None) and (moment_exponent is not None):
            moment_stderr *= math.pow(10, moment_exponent)

        evid = event.resource_id.id.split("/")[-1]
        # Create a new origin only if centroid time is defined:
        origin = None
        if centroid_origin_time.strip() != ".":
            origin = Origin()
            res_id = "/".join(
                (res_id_prefix, "origin", evid, source_contributor.lower(), "mw" + computation_type.lower())
            )
            origin.resource_id = ResourceIdentifier(id=res_id)
            origin.creation_info = CreationInfo(agency_id=source_contributor)
            date = event.origins[0].time.strftime("%Y%m%d")
            origin.time = UTCDateTime(date + centroid_origin_time)
            # Check if centroid time is on the next day:
            if origin.time < event.origins[0].time:
                origin.time += timedelta(days=1)
            self._storeUncertainty(origin.time_errors, orig_time_stderr)
            origin.latitude = centroid_latitude
            origin.longitude = centroid_longitude
            origin.depth = centroid_depth * 1000
            if lat_stderr == "Fixed" and lon_stderr == "Fixed":
                origin.epicenter_fixed = True
            else:
                self._storeUncertainty(origin.latitude_errors, self._latErrToDeg(lat_stderr))
                self._storeUncertainty(origin.longitude_errors, self._lonErrToDeg(lon_stderr, origin.latitude))
            if depth_stderr == "Fixed":
                origin.depth_type = "operator assigned"
            else:
                origin.depth_type = "from location"
                self._storeUncertainty(origin.depth_errors, depth_stderr, scale=1000)
            quality = OriginQuality()
            quality.used_station_count = station_number + station_number2
            quality.used_phase_count = component_number + component_number2
            origin.quality = quality
            origin.type = "centroid"
            event.origins.append(origin)
        focal_mechanism = FocalMechanism()
        res_id = "/".join(
            (res_id_prefix, "focalmechanism", evid, source_contributor.lower(), "mw" + computation_type.lower())
        )
        focal_mechanism.resource_id = ResourceIdentifier(id=res_id)
        focal_mechanism.creation_info = CreationInfo(agency_id=source_contributor)
        moment_tensor = MomentTensor()
        if origin is not None:
            moment_tensor.derived_origin_id = origin.resource_id
        else:
            # this is required for QuakeML validation:
            res_id = "/".join((res_id_prefix, "no-origin"))
            moment_tensor.derived_origin_id = ResourceIdentifier(id=res_id)
        for mag in event.magnitudes:
#.........这里部分代码省略.........
开发者ID:kaeufl,项目名称:obspy,代码行数:101,代码来源:mchedr.py


注:本文中的obspy.core.event.MomentTensor类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。