本文整理汇总了Python中nupic.encoders.adaptivescalar.AdaptiveScalarEncoder.write方法的典型用法代码示例。如果您正苦于以下问题:Python AdaptiveScalarEncoder.write方法的具体用法?Python AdaptiveScalarEncoder.write怎么用?Python AdaptiveScalarEncoder.write使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nupic.encoders.adaptivescalar.AdaptiveScalarEncoder
的用法示例。
在下文中一共展示了AdaptiveScalarEncoder.write方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: DeltaEncoder
# 需要导入模块: from nupic.encoders.adaptivescalar import AdaptiveScalarEncoder [as 别名]
# 或者: from nupic.encoders.adaptivescalar.AdaptiveScalarEncoder import write [as 别名]
class DeltaEncoder(AdaptiveScalarEncoder):
"""
This is an implementation of a delta encoder. The delta encoder encodes differences between
successive scalar values instead of encoding the actual values. It returns an actual value when
decoding and not a delta.
"""
def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
resolution=0, name=None, verbosity=0, clipInput=True, forced=False):
"""[ScalarEncoder class method override]"""
self._learningEnabled = True
self._stateLock = False
self.width = 0
self.encoders = None
self.description = []
self.name = name
if periodic:
#Delta scalar encoders take non-periodic inputs only
raise Exception('Delta encoder does not encode periodic inputs')
assert n!=0 #An adaptive encoder can only be intialized using n
self._adaptiveScalarEnc = AdaptiveScalarEncoder(w=w, n=n, minval=minval,
maxval=maxval, clipInput=True, name=name, verbosity=verbosity, forced=forced)
self.width+=self._adaptiveScalarEnc.getWidth()
self.n = self._adaptiveScalarEnc.n
self._prevAbsolute = None #how many inputs have been sent to the encoder?
self._prevDelta = None
def encodeIntoArray(self, input, output, learn=None):
if not isinstance(input, numbers.Number):
raise TypeError(
"Expected a scalar input but got input of type %s" % type(input))
if learn is None:
learn = self._learningEnabled
if input == SENTINEL_VALUE_FOR_MISSING_DATA:
output[0:self.n] = 0
else:
#make the first delta zero so that the delta ranges are not messed up.
if self._prevAbsolute==None:
self._prevAbsolute= input
delta = input - self._prevAbsolute
self._adaptiveScalarEnc.encodeIntoArray(delta, output, learn)
if not self._stateLock:
self._prevAbsolute = input
self._prevDelta = delta
return output
def setStateLock(self, lock):
self._stateLock = lock
def setFieldStats(self, fieldName, fieldStatistics):
pass
def getBucketIndices(self, input, learn=None):
return self._adaptiveScalarEnc.getBucketIndices(input, learn)
def getBucketInfo(self, buckets):
return self._adaptiveScalarEnc.getBucketInfo(buckets)
def topDownCompute(self, encoded):
"""[ScalarEncoder class method override]"""
#Decode to delta scalar
if self._prevAbsolute==None or self._prevDelta==None:
return [EncoderResult(value=0, scalar=0,
encoding=numpy.zeros(self.n))]
ret = self._adaptiveScalarEnc.topDownCompute(encoded)
if self._prevAbsolute != None:
ret = [EncoderResult(value=ret[0].value+self._prevAbsolute,
scalar=ret[0].scalar+self._prevAbsolute,
encoding=ret[0].encoding)]
# ret[0].value+=self._prevAbsolute
# ret[0].scalar+=self._prevAbsolute
return ret
@classmethod
def read(cls, proto):
encoder = object.__new__(cls)
encoder.width = proto.width
encoder.name = proto.name or None
encoder.n = proto.n
encoder._adaptiveScalarEnc = (
AdaptiveScalarEncoder.read(proto.adaptiveScalarEnc)
)
encoder._prevAbsolute = proto.prevAbsolute
encoder._prevDelta = proto.prevDelta
encoder._stateLock = proto.stateLock
return encoder
def write(self, proto):
proto.width = self.width
#.........这里部分代码省略.........
示例2: DeltaEncoder
# 需要导入模块: from nupic.encoders.adaptivescalar import AdaptiveScalarEncoder [as 别名]
# 或者: from nupic.encoders.adaptivescalar.AdaptiveScalarEncoder import write [as 别名]
#.........这里部分代码省略.........
# are really going over and abusing the knowledge that the brain can handle various kind of data. Yes, the brain can handle new
# encoded representation, however it takes a lot of time, and the change in encoded representation is not this arbitrary. With
# this kind of arbirtrary (encoding scheme changes merely whenever new max or min input is presented), even the brain's learning
# algorithm will be messed up.
def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
resolution=0, name=None, verbosity=0, clipInput=True, forced=False):
"""[ScalarEncoder class method override]"""
self._learningEnabled = True
self._stateLock = False
self.width = 0
self.encoders = None
self.description = []
self.name = name
if periodic:
#Delta scalar encoders take non-periodic inputs only
raise Exception('Delta encoder does not encode periodic inputs')
assert n!=0 #An adaptive encoder can only be intialized using n
self._adaptiveScalarEnc = AdaptiveScalarEncoder(w=w, n=n, minval=minval,
maxval=maxval, clipInput=True, name=name, verbosity=verbosity, forced=forced)
self.width+=self._adaptiveScalarEnc.getWidth()
self.n = self._adaptiveScalarEnc.n
self._prevAbsolute = None #how many inputs have been sent to the encoder?
self._prevDelta = None
def encodeIntoArray(self, input, output, learn=None):
if not isinstance(input, numbers.Number):
raise TypeError(
"Expected a scalar input but got input of type %s" % type(input))
if learn is None:
learn = self._learningEnabled
if input == SENTINEL_VALUE_FOR_MISSING_DATA:
output[0:self.n] = 0
else:
#make the first delta zero so that the delta ranges are not messed up.
if self._prevAbsolute==None:
self._prevAbsolute= input
delta = input - self._prevAbsolute
self._adaptiveScalarEnc.encodeIntoArray(delta, output, learn) # to_note: generate a representation for the difference between the current
if not self._stateLock: # input and the last input.
self._prevAbsolute = input
self._prevDelta = delta
return output
############################################################################
def setStateLock(self, lock):
self._stateLock = lock
############################################################################
def setFieldStats(self, fieldName, fieldStatistics):
pass
############################################################################
def getBucketIndices(self, input, learn=None):
return self._adaptiveScalarEnc.getBucketIndices(input, learn)
############################################################################
def getBucketInfo(self, buckets):
return self._adaptiveScalarEnc.getBucketInfo(buckets)
############################################################################
def topDownCompute(self, encoded):
"""[ScalarEncoder class method override]"""
#Decode to delta scalar
if self._prevAbsolute==None or self._prevDelta==None:
return [EncoderResult(value=0, scalar=0,
encoding=numpy.zeros(self.n))]
ret = self._adaptiveScalarEnc.topDownCompute(encoded)
if self._prevAbsolute != None:
ret = [EncoderResult(value=ret[0].value+self._prevAbsolute,
scalar=ret[0].scalar+self._prevAbsolute,
encoding=ret[0].encoding)] # problem_with_this_approach: encoded houses the value of delta, so it should
# ret[0].value+=self._prevAbsolute # the decoding scheme in topDownCompute will generate delta. If we add that delta
# ret[0].scalar+=self._prevAbsolute # to the previous absolute scalar, we will get a completely useless result
return ret
@classmethod
def read(cls, proto):
encoder = object.__new__(cls)
encoder.width = proto.width
encoder.name = proto.name or None
encoder.n = proto.n
encoder._adaptiveScalarEnc = (
AdaptiveScalarEncoder.read(proto.adaptiveScalarEnc)
)
encoder._prevAbsolute = proto.prevAbsolute
encoder._prevDelta = proto.prevDelta
encoder._stateLock = proto.stateLock
return encoder
def write(self, proto):
proto.width = self.width
proto.name = self.name or ""
proto.n = self.n
self._adaptiveScalarEnc.write(proto.adaptiveScalarEnc)
proto.prevAbsolute = self._prevAbsolute
proto.prevDelta = self._prevDelta
proto.stateLock = self._stateLock
示例3: AdaptiveScalarTest
# 需要导入模块: from nupic.encoders.adaptivescalar import AdaptiveScalarEncoder [as 别名]
# 或者: from nupic.encoders.adaptivescalar.AdaptiveScalarEncoder import write [as 别名]
#.........这里部分代码省略.........
_verify(1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
_verify(2, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
_verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
_verify(3, [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
_verify(-9, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
_verify(-8, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
_verify(-7, [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
_verify(-6, [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
_verify(-5, [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
_verify(0, [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])
_verify(8, [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0])
_verify(8, [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0])
_verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
_verify(11, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
_verify(12, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
_verify(13, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
_verify(14, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
_verify(15, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
#"""Test switching learning off"""
l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=1, maxval=10,
periodic=False, forced=True)
_verify(1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
_verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
_verify(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
_verify(10, [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])
l.setLearning(False)
_verify(30, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], expV=20)
_verify(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
_verify(-10, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], expV=1)
_verify(-1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], expV=1)
l.setLearning(True)
_verify(30, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
_verifyNot(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
_verify(-10, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
_verifyNot(-1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
def testSetFieldStats(self):
"""Test setting the min and max using setFieldStats"""
def _dumpParams(enc):
return (enc.n, enc.w, enc.minval, enc.maxval, enc.resolution,
enc._learningEnabled, enc.recordNum,
enc.radius, enc.rangeInternal, enc.padding, enc.nInternal)
sfs = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=1, maxval=10,
periodic=False, forced=True)
reg = AdaptiveScalarEncoder(name='scalar', n=14, w=5, minval=1, maxval=100,
periodic=False, forced=True)
self.assertNotEqual(_dumpParams(sfs), _dumpParams(reg),
("Params should not be equal, since the two encoders "
"were instantiated with different values."))
# set the min and the max using sFS to 1,100 respectively.
sfs.setFieldStats("this", {"this":{"min":1, "max":100}})
#Now the parameters for both should be the same
self.assertEqual(_dumpParams(sfs), _dumpParams(reg),
("Params should now be equal, but they are not. sFS "
"should be equivalent to initialization."))
def testReadWrite(self):
originalValue = self._l.encode(1)
proto1 = AdaptiveScalarEncoderProto.new_message()
self._l.write(proto1)
# Write the proto to a temp file and read it back into a new proto
with tempfile.TemporaryFile() as f:
proto1.write(f)
f.seek(0)
proto2 = AdaptiveScalarEncoderProto.read(f)
encoder = AdaptiveScalarEncoder.read(proto2)
self.assertIsInstance(encoder, AdaptiveScalarEncoder)
self.assertEqual(encoder.recordNum, self._l.recordNum)
self.assertDictEqual(encoder.slidingWindow.__dict__,
self._l.slidingWindow.__dict__)
self.assertEqual(encoder.w, self._l.w)
self.assertEqual(encoder.minval, self._l.minval)
self.assertEqual(encoder.maxval, self._l.maxval)
self.assertEqual(encoder.periodic, self._l.periodic)
self.assertEqual(encoder.n, self._l.n)
self.assertEqual(encoder.radius, self._l.radius)
self.assertEqual(encoder.resolution, self._l.resolution)
self.assertEqual(encoder.name, self._l.name)
self.assertEqual(encoder.verbosity, self._l.verbosity)
self.assertEqual(encoder.clipInput, self._l.clipInput)
self.assertTrue(numpy.array_equal(encoder.encode(1), originalValue))
self.assertEqual(self._l.decode(encoder.encode(1)),
encoder.decode(self._l.encode(1)))
# Feed in a new value and ensure the encodings match
result1 = self._l.encode(7)
result2 = encoder.encode(7)
self.assertTrue(numpy.array_equal(result1, result2))