当前位置: 首页>>代码示例>>Python>>正文


Python AdaptiveScalarEncoder.setLearning方法代码示例

本文整理汇总了Python中nupic.encoders.adaptivescalar.AdaptiveScalarEncoder.setLearning方法的典型用法代码示例。如果您正苦于以下问题:Python AdaptiveScalarEncoder.setLearning方法的具体用法?Python AdaptiveScalarEncoder.setLearning怎么用?Python AdaptiveScalarEncoder.setLearning使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nupic.encoders.adaptivescalar.AdaptiveScalarEncoder的用法示例。


在下文中一共展示了AdaptiveScalarEncoder.setLearning方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testNonPeriodicEncoderMinMaxNotSpec

# 需要导入模块: from nupic.encoders.adaptivescalar import AdaptiveScalarEncoder [as 别名]
# 或者: from nupic.encoders.adaptivescalar.AdaptiveScalarEncoder import setLearning [as 别名]
  def testNonPeriodicEncoderMinMaxNotSpec(self):
    """Non-periodic encoder, min and max not specified"""
    l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=None,
                              maxval=None, periodic=False, forced=True)

    def _verify(v, encoded, expV=None):
      if expV is None:
        expV = v

      self.assertTrue(numpy.array_equal(
        l.encode(v),
        numpy.array(encoded, dtype=defaultDtype)))
      self.assertLessEqual(
        abs(l.getBucketInfo(l.getBucketIndices(v))[0].value - expV),
        l.resolution/2)

    def _verifyNot(v, encoded):
      self.assertFalse(numpy.array_equal(
        l.encode(v), numpy.array(encoded, dtype=defaultDtype)))

    _verify(1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(2, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(3, [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
    _verify(-9, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-8, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-7, [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-6, [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(-5, [0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
    _verify(0, [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])
    _verify(8, [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0])
    _verify(8, [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0])
    _verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(11, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(12, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(13, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(14, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(15, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])


    #"""Test switching learning off"""
    l = AdaptiveScalarEncoder(name="scalar", n=14, w=5, minval=1, maxval=10,
                              periodic=False, forced=True)
    _verify(1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verify(10, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(10, [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0])

    l.setLearning(False)
    _verify(30, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], expV=20)
    _verify(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(-10, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], expV=1)
    _verify(-1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], expV=1)

    l.setLearning(True)
    _verify(30, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verifyNot(20, [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
    _verify(-10, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    _verifyNot(-1, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
开发者ID:Afey,项目名称:nupic,代码行数:61,代码来源:adaptivescalar_test.py


注:本文中的nupic.encoders.adaptivescalar.AdaptiveScalarEncoder.setLearning方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。