当前位置: 首页>>代码示例>>Python>>正文


Python MultiEncoder.decode方法代码示例

本文整理汇总了Python中nupic.encoders.MultiEncoder.decode方法的典型用法代码示例。如果您正苦于以下问题:Python MultiEncoder.decode方法的具体用法?Python MultiEncoder.decode怎么用?Python MultiEncoder.decode使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nupic.encoders.MultiEncoder的用法示例。


在下文中一共展示了MultiEncoder.decode方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Sensor

# 需要导入模块: from nupic.encoders import MultiEncoder [as 别名]
# 或者: from nupic.encoders.MultiEncoder import decode [as 别名]

#.........这里部分代码省略.........

    # Update sensor bits
    for i in range(len(outputArray)):
      if outputArray[i] > 0.:
        self.bits[i].isActive.setForCurrStep(True)
      else:
        self.bits[i].isActive.setForCurrStep(False)

    # Mark falsely predicted bits
    for bit in self.bits:
      if bit.isPredicted.atPreviousStep() and not bit.isActive.atCurrStep():
        bit.isFalselyPredicted.setForCurrStep(True)

    self._output = outputArray

  def getPredictions(self):
    """
    Get the predictions after an iteration.
    """

    if self.predictionsMethod == PredictionsMethod.reconstruction:

      # Prepare list with predictions to be classified
      # This list contains the indexes of all bits that are predicted
      output = []
      for i in range(len(self.bits)):
        if self.bits[i].isPredicted.atCurrStep():
          output.append(1)
        else:
          output.append(0)
      output = numpy.array(output)

      # Decode output and create predictions list
      fieldsDict, fieldsOrder = self.encoder.decode(output)
      for encoding in self.encodings:
        if encoding.enableInference:
          predictions = []
          encoding.predictedValues.setForCurrStep(dict())

          # If encoder field name was returned by decode(), assign the the predictions to it
          if encoding.encoderFieldName in fieldsOrder:
            predictedLabels = fieldsDict[encoding.encoderFieldName][1].split(', ')
            predictedValues = fieldsDict[encoding.encoderFieldName][0]
            for i in range(len(predictedLabels)):
              predictions.append([predictedValues[i], predictedLabels[i]])

          encoding.predictedValues.atCurrStep()[1] = predictions

          # Get the predicted value with the biggest probability to happen
          if len(predictions) > 0:
            bestPredictionRange = predictions[0][0]
            min = bestPredictionRange[0]
            max = bestPredictionRange[1]
            bestPredictedValue = (min + max) / 2.0
            encoding.bestPredictedValue.setForCurrStep(bestPredictedValue)

    elif self.predictionsMethod == PredictionsMethod.classification:
      # A classification involves estimate which are the likely values to occurs in the next time step.

      offset = 0
      for encoding in self.encodings:
        encoderWidth = encoding.encoder.getWidth()

        if encoding.enableInference:
          # Prepare list with predictions to be classified
          # This list contains the indexes of all bits that are predicted
开发者ID:Amazer,项目名称:nupic.studio,代码行数:70,代码来源:node_sensor.py


注:本文中的nupic.encoders.MultiEncoder.decode方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。