当前位置: 首页>>代码示例>>Python>>正文


Python TemporalMemory.getWinnerCells方法代码示例

本文整理汇总了Python中nupic.algorithms.temporal_memory.TemporalMemory.getWinnerCells方法的典型用法代码示例。如果您正苦于以下问题:Python TemporalMemory.getWinnerCells方法的具体用法?Python TemporalMemory.getWinnerCells怎么用?Python TemporalMemory.getWinnerCells使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nupic.algorithms.temporal_memory.TemporalMemory的用法示例。


在下文中一共展示了TemporalMemory.getWinnerCells方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testNewSegmentAddSynapsesToSubsetOfWinnerCells

# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getWinnerCells [as 别名]
  def testNewSegmentAddSynapsesToSubsetOfWinnerCells(self):
    tm = TemporalMemory(
      columnDimensions=[32],
      cellsPerColumn=4,
      activationThreshold=3,
      initialPermanence=.21,
      connectedPermanence=.50,
      minThreshold=2,
      maxNewSynapseCount=2,
      permanenceIncrement=.10,
      permanenceDecrement=.10,
      predictedSegmentDecrement=0.0,
      seed=42)

    previousActiveColumns = [0, 1, 2]
    activeColumns = [4]

    tm.compute(previousActiveColumns, True)

    prevWinnerCells = tm.getWinnerCells() #[0, 8, 7]
    self.assertEqual(3, len(prevWinnerCells))

    tm.compute(activeColumns, True)

    winnerCells = tm.getWinnerCells() #[18]
    self.assertEqual(1, len(winnerCells))
    segments = list(tm.connections.segmentsForCell(winnerCells[0]))
    self.assertEqual(1, len(segments))
    synapses = list(tm.connections.synapsesForSegment(segments[0]))
    self.assertEqual(2, len(synapses))

    for synapse in synapses:
      synapseData = tm.connections.dataForSynapse(synapse)
      self.assertAlmostEqual(.21, synapseData.permanence)
      self.assertTrue(synapseData.presynapticCell in prevWinnerCells)
开发者ID:Erichy94,项目名称:nupic,代码行数:37,代码来源:temporal_memory_test.py

示例2: testZeroActiveColumns

# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getWinnerCells [as 别名]
  def testZeroActiveColumns(self):
    tm = TemporalMemory(
      columnDimensions=[32],
      cellsPerColumn=4,
      activationThreshold=3,
      initialPermanence=.21,
      connectedPermanence=.5,
      minThreshold=2,
      maxNewSynapseCount=3,
      permanenceIncrement=.10,
      permanenceDecrement=.10,
      predictedSegmentDecrement=0.0,
      seed=42)

    previousActiveColumns = [0]
    previousActiveCells = [0, 1, 2, 3]
    expectedActiveCells = [4]

    segment = tm.createSegment(expectedActiveCells[0])
    tm.connections.createSynapse(segment, previousActiveCells[0], .5)
    tm.connections.createSynapse(segment, previousActiveCells[1], .5)
    tm.connections.createSynapse(segment, previousActiveCells[2], .5)
    tm.connections.createSynapse(segment, previousActiveCells[3], .5)

    tm.compute(previousActiveColumns, True)
    self.assertFalse(len(tm.getActiveCells()) == 0)
    self.assertFalse(len(tm.getWinnerCells()) == 0)
    self.assertFalse(len(tm.getPredictiveCells()) == 0)

    zeroColumns = []
    tm.compute(zeroColumns, True)

    self.assertTrue(len(tm.getActiveCells()) == 0)
    self.assertTrue(len(tm.getWinnerCells()) == 0)
    self.assertTrue(len(tm.getPredictiveCells()) == 0)
开发者ID:Erichy94,项目名称:nupic,代码行数:37,代码来源:temporal_memory_test.py

示例3: testMatchingSegmentAddSynapsesToAllWinnerCells

# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getWinnerCells [as 别名]
  def testMatchingSegmentAddSynapsesToAllWinnerCells(self):
    tm = TemporalMemory(
      columnDimensions=[32],
      cellsPerColumn=1,
      activationThreshold=3,
      initialPermanence=.21,
      connectedPermanence=.50,
      minThreshold=1,
      maxNewSynapseCount=3,
      permanenceIncrement=.10,
      permanenceDecrement=.10,
      predictedSegmentDecrement=0.0,
      seed=42)

    previousActiveColumns = [0, 1]
    prevWinnerCells = [0, 1]
    activeColumns = [4]

    matchingSegment = tm.createSegment(4)
    tm.connections.createSynapse(matchingSegment, 0, .5)

    tm.compute(previousActiveColumns, True)
    self.assertEqual(prevWinnerCells, tm.getWinnerCells())

    tm.compute(activeColumns)

    synapses = tm.connections.synapsesForSegment(matchingSegment)
    self.assertEqual(2, len(synapses))

    for synapse in synapses:
      synapseData = tm.connections.dataForSynapse(synapse)
      if synapseData.presynapticCell != 0:
        self.assertAlmostEqual(.21, synapseData.permanence)
        self.assertEqual(prevWinnerCells[1], synapseData.presynapticCell)
开发者ID:Erichy94,项目名称:nupic,代码行数:36,代码来源:temporal_memory_test.py

示例4: testPredictedActiveCellsAreAlwaysWinners

# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getWinnerCells [as 别名]
  def testPredictedActiveCellsAreAlwaysWinners(self):
    tm = TemporalMemory(
      columnDimensions=[32],
      cellsPerColumn=4,
      activationThreshold=3,
      initialPermanence=.21,
      connectedPermanence=.5,
      minThreshold=2,
      maxNewSynapseCount=3,
      permanenceIncrement=.10,
      permanenceDecrement=.10,
      predictedSegmentDecrement=0.0,
      seed=42)

    previousActiveColumns = [0]
    activeColumns = [1]
    previousActiveCells = [0, 1, 2, 3]
    expectedWinnerCells = [4, 6]

    activeSegment1 = tm.createSegment(expectedWinnerCells[0])
    tm.connections.createSynapse(activeSegment1, previousActiveCells[0], .5)
    tm.connections.createSynapse(activeSegment1, previousActiveCells[1], .5)
    tm.connections.createSynapse(activeSegment1, previousActiveCells[2], .5)

    activeSegment2 = tm.createSegment(expectedWinnerCells[1])
    tm.connections.createSynapse(activeSegment2, previousActiveCells[0], .5)
    tm.connections.createSynapse(activeSegment2, previousActiveCells[1], .5)
    tm.connections.createSynapse(activeSegment2, previousActiveCells[2], .5)

    tm.compute(previousActiveColumns, False)
    tm.compute(activeColumns, False)

    self.assertEqual(expectedWinnerCells, tm.getWinnerCells())
开发者ID:Erichy94,项目名称:nupic,代码行数:35,代码来源:temporal_memory_test.py

示例5: testRecycleWeakestSynapseToMakeRoomForNewSynapse

# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getWinnerCells [as 别名]
  def testRecycleWeakestSynapseToMakeRoomForNewSynapse(self):
    tm = TemporalMemory(
      columnDimensions=[32],
      cellsPerColumn=1,
      activationThreshold=3,
      initialPermanence=.21,
      connectedPermanence=.50,
      minThreshold=1,
      maxNewSynapseCount=3,
      permanenceIncrement=.02,
      permanenceDecrement=.02,
      predictedSegmentDecrement=0.0,
      seed=42,
      maxSynapsesPerSegment=3)

    prevActiveColumns = [0, 1, 2]
    prevWinnerCells = [0, 1, 2]
    activeColumns = [4]

    matchingSegment = tm.connections.createSegment(4)
    tm.connections.createSynapse(matchingSegment, 81, .6)

    weakestSynapse = tm.connections.createSynapse(matchingSegment, 0, .11)

    tm.compute(prevActiveColumns)
    self.assertEqual(prevWinnerCells, tm.getWinnerCells())
    tm.compute(activeColumns)

    synapses = tm.connections.synapsesForSegment(matchingSegment)
    self.assertEqual(3, len(synapses))
    presynapticCells = set(synapse.presynapticCell for synapse in synapses)
    self.assertFalse(0 in presynapticCells)
开发者ID:mrcslws,项目名称:nupic,代码行数:34,代码来源:temporal_memory_test.py

示例6: testRecycleWeakestSynapseToMakeRoomForNewSynapse

# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getWinnerCells [as 别名]
  def testRecycleWeakestSynapseToMakeRoomForNewSynapse(self):
    tm = TemporalMemory(
      columnDimensions=[32],
      cellsPerColumn=1,
      activationThreshold=3,
      initialPermanence=.21,
      connectedPermanence=.50,
      minThreshold=1,
      maxNewSynapseCount=3,
      permanenceIncrement=.02,
      permanenceDecrement=.02,
      predictedSegmentDecrement=0.0,
      seed=42,
      maxSynapsesPerSegment=4)

    prevActiveColumns = [1, 2, 3]
    prevWinnerCells = [1, 2, 3]
    activeColumns = [4]

    matchingSegment = tm.createSegment(4)
    tm.connections.createSynapse(matchingSegment, 81, .6)

    # Create a weak synapse. Make sure it's not so weak that permanenceIncrement
    # destroys it.
    tm.connections.createSynapse(matchingSegment, 0, .11)

    # Create a synapse that will match.
    tm.connections.createSynapse(matchingSegment, 1, .20)

    # Create a synapse with a high permanence
    tm.connections.createSynapse(matchingSegment, 31, .60)

    tm.compute(prevActiveColumns)
    self.assertEqual(prevWinnerCells, tm.getWinnerCells())
    tm.compute(activeColumns)

    synapses = tm.connections.synapsesForSegment(matchingSegment)
    self.assertEqual(4, len(synapses))
    presynapticCells = set(synapse.presynapticCell for synapse in synapses)
    self.assertEqual(set([1, 2, 3, 31]), presynapticCells)
开发者ID:Erichy94,项目名称:nupic,代码行数:42,代码来源:temporal_memory_test.py

示例7: testActiveSegmentGrowSynapsesAccordingToPotentialOverlap

# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getWinnerCells [as 别名]
  def testActiveSegmentGrowSynapsesAccordingToPotentialOverlap(self):
    """
    When a segment becomes active, grow synapses to previous winner cells.

    The number of grown synapses is calculated from the "matching segment"
    overlap, not the "active segment" overlap.
    """
    tm = TemporalMemory(
      columnDimensions=[32],
      cellsPerColumn=1,
      activationThreshold=2,
      initialPermanence=.21,
      connectedPermanence=.50,
      minThreshold=1,
      maxNewSynapseCount=4,
      permanenceIncrement=.10,
      permanenceDecrement=.10,
      predictedSegmentDecrement=0.0,
      seed=42)

    # Use 1 cell per column so that we have easy control over the winner cells.
    previousActiveColumns = [0, 1, 2, 3, 4]
    prevWinnerCells = [0, 1, 2, 3, 4]
    activeColumns = [5]

    activeSegment = tm.createSegment(5)
    tm.connections.createSynapse(activeSegment, 0, .5)
    tm.connections.createSynapse(activeSegment, 1, .5)
    tm.connections.createSynapse(activeSegment, 2, .2)

    tm.compute(previousActiveColumns, True)
    self.assertEqual(prevWinnerCells, tm.getWinnerCells())
    tm.compute(activeColumns, True)

    presynapticCells = set(synapse.presynapticCell for synapse in
                           tm.connections.synapsesForSegment(activeSegment))
    self.assertTrue(presynapticCells == set([0, 1, 2, 3]) or
                    presynapticCells == set([0, 1, 2, 4]))
开发者ID:Erichy94,项目名称:nupic,代码行数:40,代码来源:temporal_memory_test.py

示例8: range

# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getWinnerCells [as 别名]
for i in range(10):

  # Send each letter in the sequence in order
  for j in range(5):
    activeColumns = set([i for i, j in zip(count(), x[j]) if j == 1])

    # The compute method performs one step of learning and/or inference. Note:
    # here we just perform learning but you can perform prediction/inference and
    # learning in the same step if you want (online learning).
    tm.compute(activeColumns, learn = True)

    # The following print statements can be ignored.
    # Useful for tracing internal states
    print("active cells " + str(tm.getActiveCells()))
    print("predictive cells " + str(tm.getPredictiveCells()))
    print("winner cells " + str(tm.getWinnerCells()))
    print("# of active segments " + str(tm.connections.numSegments()))

  # The reset command tells the TM that a sequence just ended and essentially
  # zeros out all the states. It is not strictly necessary but it's a bit
  # messier without resets, and the TM learns quicker with resets.
  tm.reset()


#######################################################################
#
# Step 3: send the same sequence of vectors and look at predictions made by
# temporal memory
for j in range(5):
  print "\n\n--------","ABCDE"[j],"-----------"
  print "Raw input vector : " + formatRow(x[j])
开发者ID:Erichy94,项目名称:nupic,代码行数:33,代码来源:hello_tm.py


注:本文中的nupic.algorithms.temporal_memory.TemporalMemory.getWinnerCells方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。