本文整理汇总了Python中nupic.algorithms.temporal_memory.TemporalMemory.getPredictiveCells方法的典型用法代码示例。如果您正苦于以下问题:Python TemporalMemory.getPredictiveCells方法的具体用法?Python TemporalMemory.getPredictiveCells怎么用?Python TemporalMemory.getPredictiveCells使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nupic.algorithms.temporal_memory.TemporalMemory
的用法示例。
在下文中一共展示了TemporalMemory.getPredictiveCells方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testZeroActiveColumns
# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getPredictiveCells [as 别名]
def testZeroActiveColumns(self):
tm = TemporalMemory(
columnDimensions=[32],
cellsPerColumn=4,
activationThreshold=3,
initialPermanence=.21,
connectedPermanence=.5,
minThreshold=2,
maxNewSynapseCount=3,
permanenceIncrement=.10,
permanenceDecrement=.10,
predictedSegmentDecrement=0.0,
seed=42)
previousActiveColumns = [0]
previousActiveCells = [0, 1, 2, 3]
expectedActiveCells = [4]
segment = tm.createSegment(expectedActiveCells[0])
tm.connections.createSynapse(segment, previousActiveCells[0], .5)
tm.connections.createSynapse(segment, previousActiveCells[1], .5)
tm.connections.createSynapse(segment, previousActiveCells[2], .5)
tm.connections.createSynapse(segment, previousActiveCells[3], .5)
tm.compute(previousActiveColumns, True)
self.assertFalse(len(tm.getActiveCells()) == 0)
self.assertFalse(len(tm.getWinnerCells()) == 0)
self.assertFalse(len(tm.getPredictiveCells()) == 0)
zeroColumns = []
tm.compute(zeroColumns, True)
self.assertTrue(len(tm.getActiveCells()) == 0)
self.assertTrue(len(tm.getWinnerCells()) == 0)
self.assertTrue(len(tm.getPredictiveCells()) == 0)
示例2: testActivateCorrectlyPredictiveCells
# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getPredictiveCells [as 别名]
def testActivateCorrectlyPredictiveCells(self):
tm = TemporalMemory(
columnDimensions=[32],
cellsPerColumn=4,
activationThreshold=3,
initialPermanence=.21,
connectedPermanence=.5,
minThreshold=2,
maxNewSynapseCount=3,
permanenceIncrement=.10,
permanenceDecrement=.10,
predictedSegmentDecrement=0.0,
seed=42)
previousActiveColumns = [0]
activeColumns = [1]
previousActiveCells = [0,1,2,3]
expectedActiveCells = [4]
activeSegment = tm.createSegment(expectedActiveCells[0])
tm.connections.createSynapse(activeSegment, previousActiveCells[0], .5)
tm.connections.createSynapse(activeSegment, previousActiveCells[1], .5)
tm.connections.createSynapse(activeSegment, previousActiveCells[2], .5)
tm.connections.createSynapse(activeSegment, previousActiveCells[3], .5)
tm.compute(previousActiveColumns, True)
self.assertEqual(expectedActiveCells, tm.getPredictiveCells())
tm.compute(activeColumns, True)
self.assertEqual(expectedActiveCells, tm.getActiveCells())
示例3: testNoChangeToMatchingSegmentsInPredictedActiveColumn
# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getPredictiveCells [as 别名]
def testNoChangeToMatchingSegmentsInPredictedActiveColumn(self):
tm = TemporalMemory(
columnDimensions=[32],
cellsPerColumn=4,
activationThreshold=3,
initialPermanence=.21,
connectedPermanence=.50,
minThreshold=2,
maxNewSynapseCount=3,
permanenceIncrement=.10,
permanenceDecrement=.10,
predictedSegmentDecrement=0.0,
seed=42)
previousActiveColumns = [0]
activeColumns = [1]
previousActiveCells = [0,1,2,3]
expectedActiveCells = [4]
otherburstingCells = [5,6,7]
activeSegment = tm.createSegment(expectedActiveCells[0])
tm.connections.createSynapse(activeSegment, previousActiveCells[0], .5)
tm.connections.createSynapse(activeSegment, previousActiveCells[1], .5)
tm.connections.createSynapse(activeSegment, previousActiveCells[2], .5)
tm.connections.createSynapse(activeSegment, previousActiveCells[3], .5)
matchingSegmentOnSameCell = tm.createSegment(
expectedActiveCells[0])
s1 = tm.connections.createSynapse(matchingSegmentOnSameCell,
previousActiveCells[0], .3)
s2 = tm.connections.createSynapse(matchingSegmentOnSameCell,
previousActiveCells[1], .3)
matchingSegmentOnOtherCell = tm.createSegment(
otherburstingCells[0])
s3 = tm.connections.createSynapse(matchingSegmentOnOtherCell,
previousActiveCells[0], .3)
s4 = tm.connections.createSynapse(matchingSegmentOnOtherCell,
previousActiveCells[1], .3)
tm.compute(previousActiveColumns, True)
self.assertEqual(expectedActiveCells, tm.getPredictiveCells())
tm.compute(activeColumns, True)
self.assertAlmostEqual(.3, tm.connections.dataForSynapse(s1).permanence)
self.assertAlmostEqual(.3, tm.connections.dataForSynapse(s2).permanence)
self.assertAlmostEqual(.3, tm.connections.dataForSynapse(s3).permanence)
self.assertAlmostEqual(.3, tm.connections.dataForSynapse(s4).permanence)
示例4: range
# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getPredictiveCells [as 别名]
# We repeat the sequence 10 times
for i in range(10):
# Send each letter in the sequence in order
for j in range(5):
activeColumns = set([i for i, j in zip(count(), x[j]) if j == 1])
# The compute method performs one step of learning and/or inference. Note:
# here we just perform learning but you can perform prediction/inference and
# learning in the same step if you want (online learning).
tm.compute(activeColumns, learn = True)
# The following print statements can be ignored.
# Useful for tracing internal states
print("active cells " + str(tm.getActiveCells()))
print("predictive cells " + str(tm.getPredictiveCells()))
print("winner cells " + str(tm.getWinnerCells()))
print("# of active segments " + str(tm.connections.numSegments()))
# The reset command tells the TM that a sequence just ended and essentially
# zeros out all the states. It is not strictly necessary but it's a bit
# messier without resets, and the TM learns quicker with resets.
tm.reset()
#######################################################################
#
# Step 3: send the same sequence of vectors and look at predictions made by
# temporal memory
for j in range(5):
print "\n\n--------","ABCDE"[j],"-----------"