当前位置: 首页>>代码示例>>Python>>正文


Python TemporalMemory.getPredictiveCells方法代码示例

本文整理汇总了Python中nupic.algorithms.temporal_memory.TemporalMemory.getPredictiveCells方法的典型用法代码示例。如果您正苦于以下问题:Python TemporalMemory.getPredictiveCells方法的具体用法?Python TemporalMemory.getPredictiveCells怎么用?Python TemporalMemory.getPredictiveCells使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nupic.algorithms.temporal_memory.TemporalMemory的用法示例。


在下文中一共展示了TemporalMemory.getPredictiveCells方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testZeroActiveColumns

# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getPredictiveCells [as 别名]
  def testZeroActiveColumns(self):
    tm = TemporalMemory(
      columnDimensions=[32],
      cellsPerColumn=4,
      activationThreshold=3,
      initialPermanence=.21,
      connectedPermanence=.5,
      minThreshold=2,
      maxNewSynapseCount=3,
      permanenceIncrement=.10,
      permanenceDecrement=.10,
      predictedSegmentDecrement=0.0,
      seed=42)

    previousActiveColumns = [0]
    previousActiveCells = [0, 1, 2, 3]
    expectedActiveCells = [4]

    segment = tm.createSegment(expectedActiveCells[0])
    tm.connections.createSynapse(segment, previousActiveCells[0], .5)
    tm.connections.createSynapse(segment, previousActiveCells[1], .5)
    tm.connections.createSynapse(segment, previousActiveCells[2], .5)
    tm.connections.createSynapse(segment, previousActiveCells[3], .5)

    tm.compute(previousActiveColumns, True)
    self.assertFalse(len(tm.getActiveCells()) == 0)
    self.assertFalse(len(tm.getWinnerCells()) == 0)
    self.assertFalse(len(tm.getPredictiveCells()) == 0)

    zeroColumns = []
    tm.compute(zeroColumns, True)

    self.assertTrue(len(tm.getActiveCells()) == 0)
    self.assertTrue(len(tm.getWinnerCells()) == 0)
    self.assertTrue(len(tm.getPredictiveCells()) == 0)
开发者ID:Erichy94,项目名称:nupic,代码行数:37,代码来源:temporal_memory_test.py

示例2: testActivateCorrectlyPredictiveCells

# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getPredictiveCells [as 别名]
  def testActivateCorrectlyPredictiveCells(self):
    tm = TemporalMemory(
      columnDimensions=[32],
      cellsPerColumn=4,
      activationThreshold=3,
      initialPermanence=.21,
      connectedPermanence=.5,
      minThreshold=2,
      maxNewSynapseCount=3,
      permanenceIncrement=.10,
      permanenceDecrement=.10,
      predictedSegmentDecrement=0.0,
      seed=42)

    previousActiveColumns = [0]
    activeColumns = [1]
    previousActiveCells = [0,1,2,3]
    expectedActiveCells = [4]

    activeSegment = tm.createSegment(expectedActiveCells[0])
    tm.connections.createSynapse(activeSegment, previousActiveCells[0], .5)
    tm.connections.createSynapse(activeSegment, previousActiveCells[1], .5)
    tm.connections.createSynapse(activeSegment, previousActiveCells[2], .5)
    tm.connections.createSynapse(activeSegment, previousActiveCells[3], .5)

    tm.compute(previousActiveColumns, True)
    self.assertEqual(expectedActiveCells, tm.getPredictiveCells())
    tm.compute(activeColumns, True)
    self.assertEqual(expectedActiveCells, tm.getActiveCells())
开发者ID:Erichy94,项目名称:nupic,代码行数:31,代码来源:temporal_memory_test.py

示例3: testNoChangeToMatchingSegmentsInPredictedActiveColumn

# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getPredictiveCells [as 别名]
  def testNoChangeToMatchingSegmentsInPredictedActiveColumn(self):
    tm = TemporalMemory(
      columnDimensions=[32],
      cellsPerColumn=4,
      activationThreshold=3,
      initialPermanence=.21,
      connectedPermanence=.50,
      minThreshold=2,
      maxNewSynapseCount=3,
      permanenceIncrement=.10,
      permanenceDecrement=.10,
      predictedSegmentDecrement=0.0,
      seed=42)

    previousActiveColumns = [0]
    activeColumns = [1]
    previousActiveCells = [0,1,2,3]
    expectedActiveCells = [4]
    otherburstingCells = [5,6,7]

    activeSegment = tm.createSegment(expectedActiveCells[0])
    tm.connections.createSynapse(activeSegment, previousActiveCells[0], .5)
    tm.connections.createSynapse(activeSegment, previousActiveCells[1], .5)
    tm.connections.createSynapse(activeSegment, previousActiveCells[2], .5)
    tm.connections.createSynapse(activeSegment, previousActiveCells[3], .5)

    matchingSegmentOnSameCell = tm.createSegment(
      expectedActiveCells[0])
    s1 = tm.connections.createSynapse(matchingSegmentOnSameCell,
                                      previousActiveCells[0], .3)
    s2 = tm.connections.createSynapse(matchingSegmentOnSameCell,
                                      previousActiveCells[1], .3)

    matchingSegmentOnOtherCell = tm.createSegment(
      otherburstingCells[0])
    s3 = tm.connections.createSynapse(matchingSegmentOnOtherCell,
                                      previousActiveCells[0], .3)
    s4 = tm.connections.createSynapse(matchingSegmentOnOtherCell,
                                      previousActiveCells[1], .3)


    tm.compute(previousActiveColumns, True)
    self.assertEqual(expectedActiveCells, tm.getPredictiveCells())
    tm.compute(activeColumns, True)

    self.assertAlmostEqual(.3, tm.connections.dataForSynapse(s1).permanence)
    self.assertAlmostEqual(.3, tm.connections.dataForSynapse(s2).permanence)
    self.assertAlmostEqual(.3, tm.connections.dataForSynapse(s3).permanence)
    self.assertAlmostEqual(.3, tm.connections.dataForSynapse(s4).permanence)
开发者ID:Erichy94,项目名称:nupic,代码行数:51,代码来源:temporal_memory_test.py

示例4: range

# 需要导入模块: from nupic.algorithms.temporal_memory import TemporalMemory [as 别名]
# 或者: from nupic.algorithms.temporal_memory.TemporalMemory import getPredictiveCells [as 别名]
# We repeat the sequence 10 times
for i in range(10):

  # Send each letter in the sequence in order
  for j in range(5):
    activeColumns = set([i for i, j in zip(count(), x[j]) if j == 1])

    # The compute method performs one step of learning and/or inference. Note:
    # here we just perform learning but you can perform prediction/inference and
    # learning in the same step if you want (online learning).
    tm.compute(activeColumns, learn = True)

    # The following print statements can be ignored.
    # Useful for tracing internal states
    print("active cells " + str(tm.getActiveCells()))
    print("predictive cells " + str(tm.getPredictiveCells()))
    print("winner cells " + str(tm.getWinnerCells()))
    print("# of active segments " + str(tm.connections.numSegments()))

  # The reset command tells the TM that a sequence just ended and essentially
  # zeros out all the states. It is not strictly necessary but it's a bit
  # messier without resets, and the TM learns quicker with resets.
  tm.reset()


#######################################################################
#
# Step 3: send the same sequence of vectors and look at predictions made by
# temporal memory
for j in range(5):
  print "\n\n--------","ABCDE"[j],"-----------"
开发者ID:Erichy94,项目名称:nupic,代码行数:33,代码来源:hello_tm.py


注:本文中的nupic.algorithms.temporal_memory.TemporalMemory.getPredictiveCells方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。