当前位置: 首页>>代码示例>>Python>>正文


Python DBN.score方法代码示例

本文整理汇总了Python中nolearn.dbn.DBN.score方法的典型用法代码示例。如果您正苦于以下问题:Python DBN.score方法的具体用法?Python DBN.score怎么用?Python DBN.score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nolearn.dbn.DBN的用法示例。


在下文中一共展示了DBN.score方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train_test_split

# 需要导入模块: from nolearn.dbn import DBN [as 别名]
# 或者: from nolearn.dbn.DBN import score [as 别名]
(train_x,vali_x,train_y,vali_y) = train_test_split(train_x,train_y,test_size = 0.2)

dbn = DBN(
        [300,1024,120000],
        learn_rates = 0.025,
        learn_rate_decays = 0.98,
        l2_costs = 0.0001,
        minibatch_size=256,
        epochs=5,
        momentum = 0.9,
        #dropouts=0.22,
        verbose = 2)

dbn.fit(train_x, train_y)
print 'validation score is:' ,dbn.score(vali_x,vali_y)

result = dbn.predict(test_x)
with open('data/result','w') as f:
    for el in result:
        f.write(el+'\n')

#predicted_y_proba = dbn.predict_proba(test_x)


#if __name__ == "__main__":
    #p_proba_str = cPickle.dumps(predicted_y_proba)
    '''import sys
    file_name = sys.argv[1]
    with open(file_name, 'w') as a:
        a.write(p_proba_str)'''
开发者ID:ranyu,项目名称:LMOptima,代码行数:32,代码来源:dbn_min.py

示例2: _score

# 需要导入模块: from nolearn.dbn import DBN [as 别名]
# 或者: from nolearn.dbn.DBN import score [as 别名]
    verbose = 1)


##### Below is the trick for changing score function to evaluate the accuracy. The original program
    # does not have other options except for pure compare % of accurate outputs,
    # here one may create a function of his/her own.
import new

def _score(self, X, y):
    outputs = self.predict_proba(X)
    targets = self._onehot(y)  # This is a built-in function to ensure results are like 1,2,3,... as numerical
    mistakes = np.sum(np.not_equal(targets, outputs))
    #return - float(mistakes) / len(y) + 1
    return  1 - 1.0*mistakes/len(y)

dbn.score = new.instancemethod(_score, dbn, dbn.__class__) #update the score function
###########
dbn.fit(trainX, trainY)

# compute the predictions for the test data and show a classification
# report
preds = dbn.predict(testX)
print classification_report(testY, preds)
print 'The accuracy on testing data is:', accuracy_score(testY, preds)

# randomly select a few of the test instances
for i in np.random.choice(np.arange(0, len(testY)), size = (10,)):
    # classify the digit
    pred = dbn.predict(np.atleast_2d(testX[i]))
    # reshape the feature vector to be a 28x28 pixel image, then change
    # the data type to be an unsigned 8-bit integer
开发者ID:pmnyc,项目名称:Machine_Learning_Test_Repository,代码行数:33,代码来源:DBN_for_OCR.py

示例3: range

# 需要导入模块: from nolearn.dbn import DBN [as 别名]
# 或者: from nolearn.dbn.DBN import score [as 别名]
        max_epochs=10,
        verbose=1)
    classifiers.append(('nolearn.lasagne', clf))


RUNS = 1

for name, orig in classifiers:
    times = []
    accuracies = []
    for i in range(RUNS):
        start = time.time()

        clf = clone(orig)
        clf.random_state = int(time.time())
        clf.fit(X_train, y_train)

        y_pred = clf.predict(X_test)
        accuracies.append(clf.score(X_test, y_test))
        times.append(time.time() - start)

    a_t = np.array(times)
    a_s = np.array(accuracies)

    print("\n"+name)
    print("\tAccuracy: %5.2f%% ±%4.2f" % (100.0 * a_s.mean(), 100.0 * a_s.std()))
    print("\tTimes:    %5.2fs ±%4.2f" % (a_t.mean(), a_t.std()))
    print("\tReport:")
    print(classification_report(y_test, y_pred))
开发者ID:lihang00,项目名称:scikit-neuralnetwork,代码行数:31,代码来源:bench_mnist.py

示例4: main

# 需要导入模块: from nolearn.dbn import DBN [as 别名]
# 或者: from nolearn.dbn.DBN import score [as 别名]
def main():
    """."""

    from sklearn.cross_validation import KFold

    set_verbosity(3)


    overlap_df = get_data("./vectors/google_overlap.csv")
    #overlap_df = get_data("./vectors/freebase_overlap.csv")

    overlap_df = overlap_df[overlap_df.NER != 'O']
    overlap_df = overlap_df[overlap_df.NER != 'I-FAC']
    overlap_df = overlap_df[overlap_df.NER != 'B-FAC']
    overlap_df = overlap_df[overlap_df.NER != 'I-LOC']
    overlap_df = overlap_df[overlap_df.NER != 'B-LOC']
    overlap_df = overlap_df[overlap_df.NER != 'I-WEA']
    overlap_df = overlap_df[overlap_df.NER != 'B-WEA']
    overlap_df = overlap_df[overlap_df.NER != 'I-VEH']
    overlap_df = overlap_df[overlap_df.NER != 'B-VEH']
    overlap_df = overlap_df[overlap_df.NER != 'I-TTL']
    overlap_df = overlap_df[overlap_df.NER != 'B-TTL']
    #overlap_df = overlap_df.groupby("NER").filter(lambda x: len(x) > 50)


    label_map, labels = map_labels(overlap_df)
    X, y = parse_data(overlap_df, label_map)
    trainX, testX, trainY, testY = train_test_split(X, y, test_size=0.10)


    count, n_folds, scores = 0, 20, []
    logging.info("Beginning Cross Validation with " + str(n_folds) + " folds")    
    
    kf = KFold(len(trainX), n_folds=n_folds)
    lrs = list(np.linspace(0.1, 0.4, num=n_folds))
    for train, test in kf:
        logging.debug("TRAIN:" + str(len(train)) + " TEST:" + str(len(test)))
        trainX_fold, validX_fold = trainX[train], trainX[test]
        trainY_fold, validY_fold = trainY[train], trainY[test]
    
        google_topology = [trainX_fold.shape[1], 300, 200, 100, len(labels)]
        #freebase_topology = [trainX_fold.shape[1], 750, 500, 250, len(labels)]

        dbn = DBN(
            #freebase_topology,
            google_topology,
            learn_rates=float(lrs[count]),
            learn_rate_decays=0.9,
            epochs=50,
            verbose=0)

        dbn.fit(trainX_fold, trainY_fold)
        score = dbn.score(validX_fold, validY_fold)
        scores.append((score, float(lrs[count])))

        count += 1
        logging.info(
            "Learning rate: " + str(float(lrs[count-1])) + " score:" + \
            str(score) + " " + str(float(count)/float(n_folds) * 100) + "% done")

    best_lr = max(scores, key=lambda x: x[0])[1]
    logging.info("Best CV score: " + str(best_lr))


    google_topology = [trainX.shape[1], 300, 200, 100, len(labels)]
    #freebase_topology = [trainX.shape[1], 750, 500, 250, len(labels)]

    dbn = DBN(
        #freebase_topology,
        google_topology,
        learn_rates=best_lr,
        learn_rate_decays=0.9,
        epochs=100,
        verbose=1)

    dbn.fit(trainX, trainY)

    preds = dbn.predict(testX)
    print classification_report(testY, preds)


    #model_and_data = (dbn, label_map)
    #dump_model(model_and_data, './google_model.pkl')

    #'''

    '''
开发者ID:nickmarton,项目名称:NLP,代码行数:89,代码来源:FeatureCreator.py

示例5: DBN

# 需要导入模块: from nolearn.dbn import DBN [as 别名]
# 或者: from nolearn.dbn.DBN import score [as 别名]
datareader2 = csv.reader(f2)

for row in datareader2:
    labellist = []
    labellist = [float(x) for x in row]
    train_labels.extend(labellist)


X_train, X_test, y_train, y_test = cross_validation.train_test_split(train, train_labels, test_size=0.2, random_state=0)

print "Applying a learning algorithm..."


from nolearn.dbn import DBN

X_train = np.array(X_train)
X_test = np.array(X_test)
y_train = np.array(y_train)
y_test = np.array(y_test)
clf = DBN([X_train.shape[1], 300, 10], learn_rates=0.3, learn_rate_decays=0.9, epochs=15, verbose=1)

clf.fit(X_train, y_train)
acc_nn = clf.score(X_test, y_test)
print "neural network accuracy: ", acc_nn


y_pred = clf.predict(X_test)
print "Classification report:"
print classification_report(y_test, y_pred)
print ("Confusion matrix:\n%s" % metrics.confusion_matrix(y_test, y_pred))
开发者ID:rohitdate,项目名称:MachineLearningProjects,代码行数:32,代码来源:Neural_nw_train.py

示例6: classification_report

# 需要导入模块: from nolearn.dbn import DBN [as 别名]
# 或者: from nolearn.dbn.DBN import score [as 别名]
        output_num_units=10,
        output_nonlinearity=softmax,
        eval_size=0.0,

        more_params=dict(
            hidden1_num_units=300,
        ),

        update=nesterov_momentum,
        update_learning_rate=0.02,
        update_momentum=0.9,

        max_epochs=10,
        verbose=1
        )
    classifiers.append(('nolearn.lasagne', clf))


for name, clf in classifiers:
    start = time.time()
    clf.fit(X_train, y_train)

    from sklearn.metrics import classification_report

    y_pred = clf.predict(X_test)
    print name
    print "\tAccuracy:", clf.score(X_test, y_test)
    print "\tTime:", time.time() - start
    print "\tReport:"
    print classification_report(y_test, y_pred)
开发者ID:KobeDeShow,项目名称:scikit-neuralnetwork,代码行数:32,代码来源:bench_mnist.py


注:本文中的nolearn.dbn.DBN.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。