本文整理汇总了Python中nltk.tag.stanford.NERTagger.tag_sents方法的典型用法代码示例。如果您正苦于以下问题:Python NERTagger.tag_sents方法的具体用法?Python NERTagger.tag_sents怎么用?Python NERTagger.tag_sents使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nltk.tag.stanford.NERTagger
的用法示例。
在下文中一共展示了NERTagger.tag_sents方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ner_tag
# 需要导入模块: from nltk.tag.stanford import NERTagger [as 别名]
# 或者: from nltk.tag.stanford.NERTagger import tag_sents [as 别名]
def ner_tag(sents, silent=True) :
""" Named Entety Recognition for sentences.
Keyword arguments:
sents -- Sentece, list of sentences or list of tokens.
Returns :
List of (word,neg-tag) pairs, that aims to preserve the structure of the sents input argument.
"""
if len(sents) == 0 :
return []
# saves ner_tagger as global variable,
# such that it is not recreated everytime ner_tag is executed
if not 'ner_tagger' in globals():
global ner_tagger
ner_tagger = NERTagger(stanford_ner_classifier, stanford_ner)
# if sentence not tokenized
if type(sents) in [str,unicode] :
sents = tokenize(sents,'sw')
# bring input sents in right form
elif type(sents[0]) in [str,unicode] :
if ' ' in sents[0] :
sents = [tokenize(s,'w') for s in sents]
else :
sents = [sents]
tagged = ner_tagger.tag_sents(sents)
if not silent :
print('ner-tags:', tagged)
return tagged
示例2: add_ner
# 需要导入模块: from nltk.tag.stanford import NERTagger [as 别名]
# 或者: from nltk.tag.stanford.NERTagger import tag_sents [as 别名]
def add_ner(self,target):
all_token = self.get_token(target);
st = \
NERTagger('../stanford-ner-2015-04-20/classifiers/english.all.3class.distsim.crf.ser.gz','../stanford-ner-2015-04-20/stanford-ner.jar');
ner_result = st.tag_sents(all_token);
w = open('ner_%s'%target,'wb');
for num,row in enumerate(ner_result):
for item in row:
w.write(item[0]+'\n');
w.write('\n');
#end for
print len(ner_result),len(all_token);
return;
示例3: run_tagger
# 需要导入模块: from nltk.tag.stanford import NERTagger [as 别名]
# 或者: from nltk.tag.stanford.NERTagger import tag_sents [as 别名]
def run_tagger(self, payload):
"""
Runs :py:meth:`nltk.tag.stanford.NERTagger.tag_sents` on the provided
text (http://www.nltk.org/api/nltk.tag.html#nltk.tag.stanford.NERTagger.tag_sents)
:param payload: Fulltext payload.
:type payload: string
:return: List of parsed sentences.
"""
if NERTagger is None:
return None
tagger = NERTagger(self.classifier, self.jarfile)
return tagger.tag_sents([payload.encode('ascii', 'ignore').split()])
示例4: str
# 需要导入模块: from nltk.tag.stanford import NERTagger [as 别名]
# 或者: from nltk.tag.stanford.NERTagger import tag_sents [as 别名]
list_of_sentences.extend(tkzd_sentences)
i+=1
except Exception as error:
if "utf" in str(error):
pass
else:
print "SOMETHING HAPPENED"
print "\nxxxxxxxxxxx-------------xxxxxxxxxxx\n"
print len(list_of_sentences)
print i
# raw_input("...continue?")
IOB_sentences = tagger.tag_sents(list_of_sentences)
print len(IOB_sentences)
twitter_ners = {}
for ne_tagged_sent in IOB_sentences:
named_entities = get_continuous_chunks(ne_tagged_sent)
named_entities_str = [" ".join([token for token, tag in ne]) for ne in named_entities]
named_entities_str_tag = [(" ".join([token for token, tag in ne]), ne[0][1]) for ne in named_entities]
if len(named_entities_str_tag)>0:
for string, tag in named_entities_str_tag:
try:
twitter_ners[tag.lower()].append(string.lower())
except:
twitter_ners[tag.lower()] = [string.lower()]
for k,v in twitter_ners.items():