本文整理汇总了Python中nltk.probability.FreqDist.tabulate方法的典型用法代码示例。如果您正苦于以下问题:Python FreqDist.tabulate方法的具体用法?Python FreqDist.tabulate怎么用?Python FreqDist.tabulate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nltk.probability.FreqDist
的用法示例。
在下文中一共展示了FreqDist.tabulate方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: print_results
# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import tabulate [as 别名]
def print_results(self):
print
print("int-binned log-likelihood distributions:")
ll_fdist = FreqDist(self.res["dlist_dist"])
ll_fdist.tabulate()
print
print(self.res["cm"])
print("{:<30}{:>.3%}"
.format("Majority Class Prior Prob: ",
self.res["prior_probability"]))
print("{:<30}{:>}"
.format("Majority Class Label: ", self.majority_label))
print
print("{:<30}{:>.3%}"
.format("Accuracy: ", self.res["accuracy"]))
print("{:<30}{:>.3%}"
.format("Error: ", self.res["error"]))
print("{:<30}{:>.3%}"
.format("Error Reduction / Baseline: ",
self.res["error_reduction"]))
print
print("{:<7}{:<23}{:>.3%}"
.format(self.root_star,
"Precision: ",
self.res["root_star_precision"]))
print("{:<7}{:<23}{:>.3%}"
.format(self.root,
"Precision: ",
self.res["root_precision"]))
print("{:<7}{:<23}{:>.3%}"
.format(self.root_star,
"Recall: ",
self.res["root_star_recall"]))
print("{:<7}{:<23}{:>.3%}"
.format(self.root,
"Recall: ",
self.res["root_recall"]))
print
print("{:<30}{:>.3%}"
.format("Macro Precision: ", self.res["macro_precision"]))
print("{:<30}{:>.3%}"
.format("Macro Recall: ", self.res["macro_recall"]))
print
print("Top Ten Rules:")
for l in self.decision_list[:10]:
print("{:<30}{:>.4}".format(l[0], l[1]))
print
print("3 Correct:")
for l in self.res["correct"][:3]:
print("Correctly Predicted: {} \n Rule: {}, log-likelihood: {} \n {}"
.format(l[0], l[2][0], l[2][1], " ".join(l[3])))
print
print("3 Incorrect:")
for l in self.res["incorrect"][:3]:
print("Predicted: {}, was actually: {} \n Rule: {}, log-likelihood: {} \n {}"
.format(l[0], l[1], l[2][0], l[2][1], " ".join(l[3])))
示例2: testFunc
# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import tabulate [as 别名]
def testFunc():
fw = open("./MZI/data.doc", "r", encoding="utf8");
text = fw.read();
tockens = getWordList(text)
print(len(set(tockens)))
from nltk.probability import FreqDist
from nltk.util import bigrams
fdist = FreqDist(w for w in tockens if len(w) > 1);
fdist.tabulate(50);
big = list(bigrams(w for w in tockens if len(w) > 1));
print(big[:100]);
fdist = FreqDist(str(w) for w in big);
fdist.tabulate(10);
fdist.plot(50)
示例3: len
# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import tabulate [as 别名]
tokens = tagger.tag(tokens2)
if len(tokens) == 0:
print "empty text found after preprocessing...discard"
continue
if i[1] == 5 and pos < 500:
tuple = (tokens, "good location")
documents.append(tuple)
pos += 1
if i[1] < 3 and neg < 500:
tuple = (tokens, "bad location")
documents.append(tuple)
neg += 1
list = []
for w in documents:
list.append(w[1])
print len(documents)
dict = FreqDist(list)
dict.tabulate()
for w in dict:
print w, dict[w]
f1.close()
fout = open("../classification/location/location.dat", "wb")
pickle.dump(documents, fout, protocol=0)
fout.close()
print "Finish\n"
示例4: FreqDist
# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import tabulate [as 别名]
import string
import re
for line in fileinput.input(files='-'):
data = json.loads(line)
toolfdist = FreqDist()
nontoolfdist = FreqDist()
stopwords = nltk.corpus.stopwords.words('english')
for i in range(len(data)):
text = word_tokenize(data[i]['abstract'])
if data[i]['is_tool']:
for word in text:
word = word.lower()
if word not in stopwords and word not in string.punctuation and re.fullmatch(r'[0-9\!\"\#\$\%\&\'\(\)\*\+\,\-.\/\:\;\<\=\>\?\@\[\\\]\^\_\`\{\|\}\~≥]*', word) is None:
toolfdist[word] += 1
else:
for word in text:
word = word.lower()
if word not in stopwords and word not in string.punctuation and re.fullmatch(r'[0-9\!\"\#\$\%\&\'\(\)\*\+\,\-.\/\:\;\<\=\>\?\@\[\\\]\^\_\`\{\|\}\~≥]*', word) is None:
nontoolfdist[word] += 1
for word in toolfdist:
if word in nontoolfdist:
toolfdist[word] -= 10*nontoolfdist[word]
#toolfdist[word] = 0
toolfdist.tabulate(200)