当前位置: 首页>>代码示例>>Python>>正文


Python FreqDist.iteritems方法代码示例

本文整理汇总了Python中nltk.probability.FreqDist.iteritems方法的典型用法代码示例。如果您正苦于以下问题:Python FreqDist.iteritems方法的具体用法?Python FreqDist.iteritems怎么用?Python FreqDist.iteritems使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nltk.probability.FreqDist的用法示例。


在下文中一共展示了FreqDist.iteritems方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_word_scores

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
def create_word_scores():
    # posdata是list类型,长度1084,表中每个元素都是一个list,如元素:[u'\u7535\u6c60', u'\u4e0d\u7ed9\u529b', u'\u90fd'],
    # 是每条评论的分词,如[电池 不给力 都 很 好 老婆 买 带 16G 卡 一张]
    
    posWords = list(itertools.chain(*posdata))
    negWords = list(itertools.chain(*negdata))
    objWords = list(itertools.chain(*objdata))

    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()

    for word in posWords:
        word_fd[word] += 1
        cond_word_fd['pos'][word] += 1
    for word in negWords:
        word_fd[word] += 1
        cond_word_fd['neg'][word] += 1
    for word in objWords:
        word_fd[word] += 1
        cond_word_fd['obj'][word] += 1

    pos_word_count = cond_word_fd['pos'].N() # N()计算出现过的次数总和,可以理解为所有pos类型的词出现的次数总和
    neg_word_count = cond_word_fd['neg'].N()
    obj_word_count = cond_word_fd['obj'].N()
    total_word_count = pos_word_count + neg_word_count + obj_word_count

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
        obj_score = BigramAssocMeasures.chi_sq(cond_word_fd['obj'][word], (freq, obj_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score + obj_score

    return word_scores
开发者ID:Irradiatepy,项目名称:weibo_sentiment_analysis,代码行数:36,代码来源:weibo_sentiment_classifier.py

示例2: __init__

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
  def __init__(self):
    ## Best words feature extraction
    word_fd = FreqDist()
    label_word_fd = ConditionalFreqDist()
     
    for word in movie_reviews.words(categories=['pos']):
      word_fd.inc(word.lower())
      label_word_fd['pos'].inc(word.lower())
     
    for word in movie_reviews.words(categories=['neg']):
      word_fd.inc(word.lower())
      label_word_fd['neg'].inc(word.lower())

    pos_word_count = label_word_fd['pos'].N()
    neg_word_count = label_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count
     
    word_scores = {}
     
    for word, freq in word_fd.iteritems():
      pos_score = BigramAssocMeasures.chi_sq(label_word_fd['pos'][word],
        (freq, pos_word_count), total_word_count)
      neg_score = BigramAssocMeasures.chi_sq(label_word_fd['neg'][word],
        (freq, neg_word_count), total_word_count)
      word_scores[word] = pos_score + neg_score
     
    best = sorted(word_scores.iteritems(), key=lambda (w,s): s, reverse=True)[:10000]
    self.bestwords = set([w for w, s in best])
    self.train_classifier()
开发者ID:nginz,项目名称:blazor,代码行数:31,代码来源:sentiment_analyze.py

示例3: create_words_bigrams_scores

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
def create_words_bigrams_scores():
    posdata = tp.seg_fil_senti_excel("./Machine-learning-features/seniment review set/pos_review.xlsx", 1, 1)
    negdata = tp.seg_fil_senti_excel("./Machine-learning-features/seniment review set/neg_review.xlsx", 1, 1)
    
    posWords = list(itertools.chain(*posdata))
    negWords = list(itertools.chain(*negdata))

    bigram_finder = BigramCollocationFinder.from_words(posWords)
    bigram_finder = BigramCollocationFinder.from_words(negWords)
    posBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)
    negBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)

    pos = posWords + posBigrams
    neg = negWords + negBigrams

    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()
    for word in pos:
        word_fd[word]+=1
        cond_word_fd['pos'][word]+=1

    for word in neg:
        word_fd[word]+=1
        cond_word_fd['neg'][word]+=1
    pos_word_count = cond_word_fd['pos'].N()
    neg_word_count = cond_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score

    return word_scores
开发者ID:wac81,项目名称:LSI-for-ChineseDocument,代码行数:37,代码来源:pos_neg_ml_feature.py

示例4: GetHighInformationWordsChi

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
        def GetHighInformationWordsChi(num_bestwords):
            word_fd = FreqDist()
            label_word_fd = ConditionalFreqDist()
 
            for word in movie_reviews.words(categories=['pos']):
                word_fd[word.lower()] +=1
                label_word_fd['pos'][word.lower()] +=1
 
            for word in movie_reviews.words(categories=['neg']):
                word_fd[word.lower()] +=1
                label_word_fd['neg'][word.lower()] +=1
 
            pos_word_count = label_word_fd['pos'].N()
            neg_word_count = label_word_fd['neg'].N()
            total_word_count = pos_word_count + neg_word_count
 
            word_scores = {}
 
            for word, freq in word_fd.iteritems():
                pos_score = BigramAssocMeasures.chi_sq(label_word_fd['pos'][word],
                    (freq, pos_word_count), total_word_count)
                neg_score = BigramAssocMeasures.chi_sq(label_word_fd['neg'][word],
                    (freq, neg_word_count), total_word_count)
                word_scores[word] = pos_score + neg_score
 
            best = sorted(word_scores.iteritems(), key=lambda (w,s): s, reverse=True)[:num_bestwords]
            bestwords = set([w for w, s in best])
            return bestwords
开发者ID:ai2010,项目名称:machine_learning_for_the_web,代码行数:30,代码来源:views.py

示例5: setup

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
def setup():
    global bestwords

    word_fd = FreqDist()
    label_word_fd = ConditionalFreqDist()

    for word in movie_reviews.words(categories=['pos']):
        word_fd.inc(word.strip('\'"?,.').lower())
        label_word_fd['pos'].inc(word.lower())

    for word in movie_reviews.words(categories=['neg']):
        word_fd.inc(word.strip('\'"?,.').lower())
        label_word_fd['neg'].inc(word.lower())

    pos_word_count = label_word_fd['pos'].N()
    neg_word_count = label_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count

    word_scores = {}

    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(label_word_fd['pos'][word],
            (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(label_word_fd['neg'][word],
            (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score

    best = sorted(word_scores.iteritems(), key=lambda (w,s): s, reverse=True)[:10000]
    bestwords = set([w for w, s in best])
    return train(best_bigram_word_features)
开发者ID:seanfreiburg,项目名称:chicago_tweet_grabber,代码行数:32,代码来源:analyze_tweets.py

示例6: create_word_bigram_scores

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
def create_word_bigram_scores():
    posdata = pickle.load(open('/Users/genghaiyang/ghy_works/projects/weibo_crawler/textmining/sentiML/pos_neg_review/pos_review.pkl','r'))
    negdata = pickle.load(open('/Users/genghaiyang/ghy_works/projects/weibo_crawler/textmining/sentiML/pos_neg_review/neg_review.pkl','r'))
    
    posWords = list(itertools.chain(*posdata))
    negWords = list(itertools.chain(*negdata))

    bigram_finder = BigramCollocationFinder.from_words(posWords)
    bigram_finder = BigramCollocationFinder.from_words(negWords)
    posBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)
    negBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)

    pos = posWords + posBigrams #词和双词搭配
    neg = negWords + negBigrams

    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()
    for word in pos:
        word_fd[word] += 1#word_fd.inc(word)
        cond_word_fd['pos'][word]+= 1 #cond_word_fd['pos'].inc(word)
    for word in neg:
        word_fd[word] += 1#word_fd.inc(word)
        cond_word_fd['neg'][word]+= 1#cond_word_fd['neg'].inc(word)

    pos_word_count = cond_word_fd['pos'].N()
    neg_word_count = cond_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score

    return word_scores
开发者ID:coolspiderghy,项目名称:sina_weibo_crawler,代码行数:37,代码来源:extractFeatures_org.py

示例7: create_word_scores

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
def create_word_scores(posWords, negWords):
    file_scores = file("cn_sample_data/scores.txt", "w")
    #迭代,将多个序列合并
    
    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()
    for word in posWords:
        word_fd[str(word)] += 1 
        cond_word_fd['pos'][str(word)] += 1
    for word in negWords:
	    word_fd[str(word)] += 1
	    cond_word_fd['neg'][str(word)] += 1
    pos_word_count = cond_word_fd['pos'].N()
    neg_word_count = cond_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count
    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][str(word)], (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][str(word)], (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score
    sorted(word_scores.items(), lambda x, y: cmp(x[1], y[1]), reverse=True)
    for key in word_scores:
        file_scores.write(str(key)+" : " + str(word_scores[str(key)])+ "\n")
    file_scores.close()
    return word_scores 
开发者ID:delili,项目名称:NLP_Comments_Sentiment_Analysis,代码行数:27,代码来源:process.py

示例8: getWordScores

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
def getWordScores():
    posWords = []
    negWords = []
    with open(RT_POLARITY_POS_FILE, 'r') as posSentences:
        for i in posSentences:
            posWord = re.findall(r"[\w']+|[.,!?;]", i.rstrip())
            posWords.append(posWord)
    with open(RT_POLARITY_NEG_FILE, 'r') as negSentences:
        for i in negSentences:
            negWord = re.findall(r"[\w']+|[.,!?;]", i.rstrip())
            negWords.append(negWord)
    posWords = list(itertools.chain(*posWords))
    negWords = list(itertools.chain(*negWords))

    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()
    for word in posWords:
        word_fd[word.lower()] += 1
        cond_word_fd['pos'][word.lower()] += 1
    for word in negWords:
        word_fd[word.lower()] += 1
        cond_word_fd['neg'][word.lower()] += 1

    pos_word_count = cond_word_fd['pos'].N()
    neg_word_count = cond_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score

    return word_scores
开发者ID:Sapphirine,项目名称:MyTravelAgent,代码行数:36,代码来源:Sentiment.py

示例9: clean_train_data_and_find_best_features

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
    def clean_train_data_and_find_best_features(self):
        #Top n best unigram features are selected
        freq_dist_obj = FreqDist()
        cond_freq_dist_obj = ConditionalFreqDist()
        self.book_category_set = set() 

        for instance in self.book_instances:
            try:
                raw_data = instance and instance.strip() and instance.strip().split("\t") 
                if not raw_data or len(raw_data) != 4 : continue  
                bookid  = raw_data[0]
                self.book_category_set.add(bookid)
                features = []
                features.extend(self.clean_book_title(raw_data[2]))
                features.extend(self.clean_author_name(raw_data[3]))
                features.extend(self.bookid_to_toc_dict.get(raw_data[1], []))
                for feat in features:
                    freq_dist_obj.inc(feat)
                    cond_freq_dist_obj[bookid].inc(feat)
            except:
                self.logging.info("Exception while running this instance %s \n" % instance)
                
        total_word_count = 0    
        for bookid in self.book_category_set:
            total_word_count += cond_freq_dist_obj[bookid].N()

        word_score_dict = {}
        for word, freq in freq_dist_obj.iteritems():
            score = 0
            if word and word.lower() in self.stopwords_set:continue
            for bookid in self.book_category_set:
                score += BigramAssocMeasures.chi_sq(cond_freq_dist_obj[bookid][word], (freq, cond_freq_dist_obj[bookid].N()), total_word_count)
            word_score_dict[word] = score
        self.select_top_n_best_features(word_score_dict)
开发者ID:karthik-chandrasekar,项目名称:BookClassifier,代码行数:36,代码来源:BookClassifier.py

示例10: tfidf

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
def tfidf(phrase_lists, corpus=nltk.corpus.brown.words(), ngram_range=(1, 6)):
    ranker = CorpusRanker(corpus, ngram_range)
    phrase_frequencies = FreqDist(tuple(p) for p in phrase_lists)
    phrase_scores = {}
    for phrase, freq in phrase_frequencies.iteritems():
        phrase_scores[phrase] = ranker.score(phrase, freq)
    return phrase_scores, phrase_frequencies
开发者ID:zzx88991,项目名称:mocs,代码行数:9,代码来源:ranking.py

示例11: get_bestwords

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
def get_bestwords(contents, labels, limit = 10000, n = None, cache = True):
    if cache:
        if n:
            cache_path = 'cache/%s_%s.pkl' % (limit, n)
            if os.path.exists(cache_path):
                bestwords = pickle.load(open(cache_path, 'r'))
                print 'Loaded from cache'
                print 'bestwords count = %d' % (len(bestwords))
                return bestwords
    
    word_fd = FreqDist()
    label_word_fd = ConditionalFreqDist()
    
    pos_contents = contents[labels == 1]
    neg_contents = contents[labels != 0]
    
    pos_words = set()
    neg_words = set()
    
    for pos_content in pos_contents:
        pos_words = pos_words.union(word_tokenize(pos_content))
    
    for neg_content in neg_contents:
        neg_words = neg_words.union(word_tokenize(neg_content))
    
    for word in pos_words:
        word_fd.inc(word.lower())
        label_word_fd['pos'].inc(word.lower())
    
    for word in neg_words:
        word_fd.inc(word.lower())
        label_word_fd['neg'].inc(word.lower())
    
    pos_word_count = label_word_fd['pos'].N()
    neg_word_count = label_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count
    
    word_scores = {}
    
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(label_word_fd['pos'][word],
            (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(label_word_fd['neg'][word],
            (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score
    
    best = sorted(word_scores.iteritems(), key=lambda (w,s): s, reverse=True)[:limit]
    bestwords = set([w for w, s in best])
    
    print 'all words count = %d' % (len(word_scores))
    print 'bestwords count = %d' % (len(bestwords))
    
    if cache:
        if n:
            cache_path = 'cache/%s_%s.pkl' % (limit, n)
            f = open(cache_path, 'w')
            pickle.dump(bestwords, f)
            print 'Dumped to cache'
    
    return bestwords
开发者ID:colinsongf,项目名称:stumbleupon_evergreen_classification_challenge,代码行数:62,代码来源:submission.py

示例12: best_word_feats

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
 def best_word_feats(self, words):
     word_fd = FreqDist()
     label_word_fd = ConditionalFreqDist()
      
     for word in movie_reviews.words(categories=['pos']):
         word_fd.inc(word.lower())
         label_word_fd['pos'].inc(word.lower())
      
     for word in movie_reviews.words(categories=['neg']):
         word_fd.inc(word.lower())
         label_word_fd['neg'].inc(word.lower())
      
     # n_ii = label_word_fd[label][word]
     # n_ix = word_fd[word]
     # n_xi = label_word_fd[label].N()
     # n_xx = label_word_fd.N()
      
     pos_word_count = label_word_fd['pos'].N()
     neg_word_count = label_word_fd['neg'].N()
     total_word_count = pos_word_count + neg_word_count
      
     word_scores = {}
      
     for word, freq in word_fd.iteritems():
         pos_score = BigramAssocMeasures.chi_sq(label_word_fd['pos'][word],
             (freq, pos_word_count), total_word_count)
         neg_score = BigramAssocMeasures.chi_sq(label_word_fd['neg'][word],
             (freq, neg_word_count), total_word_count)
         word_scores[word] = pos_score + neg_score
      
     best = sorted(word_scores.iteritems(), key=lambda (w,s): s, reverse=True)[:10000]
     bestwords = set([w for w, s in best])
     return dict([(word, True) for word in words if word in bestwords])
开发者ID:dkaliyev,项目名称:TwitterAnalyser,代码行数:35,代码来源:NBClass.py

示例13: create_word_bigram_scores

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
def create_word_bigram_scores():
    posdata = tp.seg_fil_senti_excel("~", 1, 1)
    negdata = tp.seg_fil_senti_excel("~", 1, 1)
    
    posWords = list(itertools.chain(*posdata))
    negWords = list(itertools.chain(*negdata))

    bigram_finder = BigramCollocationFinder.from_words(posWords)
    bigram_finder = BigramCollocationFinder.from_words(negWords)
    posBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)
    negBigrams = bigram_finder.nbest(BigramAssocMeasures.chi_sq, 5000)

    pos = posWords + posBigrams
    neg = negWords + negBigrams

    word_fd = FreqDist()
    last_word = ConditionalFreqDist()
    for word in pos:
        word_fd.inc(word)
        last_word['pos'].inc(word)
    for word in neg:
        word_fd.inc(word)
        last_word['neg'].inc(word)

    pos_word_count = last_word['pos'].N()
    neg_word_count = last_word['neg'].N()
    totalnumber = pos_word_count + neg_word_count

    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(last_word['pos'][word], (freq, pos_word_count), totalnumber)
        neg_score = BigramAssocMeasures.chi_sq(last_word['neg'][word], (freq, neg_word_count), totalnumber)
        word_scores[word] = pos_score + neg_score

    return word_scores
开发者ID:TianyiM,项目名称:Final-Project,代码行数:37,代码来源:score.py

示例14: create_word_scores

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
def create_word_scores(sentences):
    # logging.info(sentences)
    words = list(itertools.chain(*sentences))
    # logging.info(words)

    #build frequency distibution of all words and then frequency distributions of words within positive and negative labels
    word_fd = FreqDist()
    cond_word_fd = ConditionalFreqDist()
    for word in words:
        word_fd.inc(word.lower())
        cond_word_fd['pos'].inc(word.lower())
        cond_word_fd['neg'].inc(word.lower())
        
    #finds the number of positive and negative words, as well as the total number of words
    pos_word_count = cond_word_fd['pos'].N()
    neg_word_count = cond_word_fd['neg'].N()
    total_word_count = pos_word_count + neg_word_count

    #builds dictionary of word scores based on chi-squared test
    word_scores = {}
    for word, freq in word_fd.iteritems():
        pos_score = BigramAssocMeasures.chi_sq(cond_word_fd['pos'][word], (freq, pos_word_count), total_word_count)
        neg_score = BigramAssocMeasures.chi_sq(cond_word_fd['neg'][word], (freq, neg_word_count), total_word_count)
        word_scores[word] = pos_score + neg_score

    return word_scores
开发者ID:karim199260,项目名称:a3,代码行数:28,代码来源:sentiment_analysis.py

示例15: get_best_words

# 需要导入模块: from nltk.probability import FreqDist [as 别名]
# 或者: from nltk.probability.FreqDist import iteritems [as 别名]
def get_best_words(words_list, num_best_words):
	from nltk.probability import FreqDist, ConditionalFreqDist
	from nltk.metrics import BigramAssocMeasures


	word_fd = FreqDist()
	label_word_fd = ConditionalFreqDist()

	for pair in words_list:
		line,sent = pair
		for word in nltk.word_tokenize(line):
			word_fd.inc(word.lower())
			label_word_fd[sent].inc(word.lower())

	pos_word_count = label_word_fd['pos'].N()
	neg_word_count = label_word_fd['neg'].N()
	total_word_count = pos_word_count + neg_word_count


	word_scores = {}
	for word, freq in word_fd.iteritems():
		pos_score = BigramAssocMeasures.chi_sq(label_word_fd['pos'][word],(freq, pos_word_count),total_word_count)
		neg_score = BigramAssocMeasures.chi_sq(label_word_fd['neg'][word],(freq, neg_word_count),total_word_count)
		word_scores[word] = pos_score + neg_score
 
	best = sorted(word_scores.iteritems(), key=lambda (w,s): s, reverse=True)[:num_best_words]
	bestwords = set([w for w, s in best])

	return bestwords
开发者ID:dsedra,项目名称:yproject,代码行数:31,代码来源:sent_master.py


注:本文中的nltk.probability.FreqDist.iteritems方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。