本文整理汇总了Python中nipype.Node.terminal_output方法的典型用法代码示例。如果您正苦于以下问题:Python Node.terminal_output方法的具体用法?Python Node.terminal_output怎么用?Python Node.terminal_output使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nipype.Node
的用法示例。
在下文中一共展示了Node.terminal_output方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: nipype_convert
# 需要导入模块: from nipype import Node [as 别名]
# 或者: from nipype.Node import terminal_output [as 别名]
def nipype_convert(item_dicoms, prefix, with_prov, bids, tmpdir):
""" """
import nipype
if with_prov:
from nipype import config
config.enable_provenance()
from nipype import Node
from nipype.interfaces.dcm2nii import Dcm2niix
item_dicoms = list(map(op.abspath, item_dicoms)) # absolute paths
dicom_dir = op.dirname(item_dicoms[0]) if item_dicoms else None
convertnode = Node(Dcm2niix(), name='convert')
convertnode.base_dir = tmpdir
convertnode.inputs.source_names = item_dicoms
convertnode.inputs.out_filename = op.basename(op.dirname(prefix))
if nipype.__version__.split('.')[0] == '0':
# deprecated since 1.0, might be needed(?) before
convertnode.inputs.terminal_output = 'allatonce'
else:
convertnode.terminal_output = 'allatonce'
convertnode.inputs.bids_format = bids
eg = convertnode.run()
# prov information
prov_file = prefix + '_prov.ttl' if with_prov else None
if prov_file:
safe_copyfile(op.join(convertnode.base_dir,
convertnode.name,
'provenance.ttl'),
prov_file)
return eg, prov_file
示例2: create_fs_reg_workflow
# 需要导入模块: from nipype import Node [as 别名]
# 或者: from nipype.Node import terminal_output [as 别名]
#.........这里部分代码省略.........
"""
reg = Node(ants.Registration(), name='antsRegister')
reg.inputs.output_transform_prefix = "output_"
reg.inputs.transforms = ['Rigid', 'Affine', 'SyN']
reg.inputs.transform_parameters = [(0.1, ), (0.1, ), (0.2, 3.0, 0.0)]
reg.inputs.number_of_iterations = [[10000, 11110, 11110]] * 2 + [[
100, 30, 20
]]
reg.inputs.dimension = 3
reg.inputs.write_composite_transform = True
reg.inputs.collapse_output_transforms = True
reg.inputs.initial_moving_transform_com = True
reg.inputs.metric = ['Mattes'] * 2 + [['Mattes', 'CC']]
reg.inputs.metric_weight = [1] * 2 + [[0.5, 0.5]]
reg.inputs.radius_or_number_of_bins = [32] * 2 + [[32, 4]]
reg.inputs.sampling_strategy = ['Regular'] * 2 + [[None, None]]
reg.inputs.sampling_percentage = [0.3] * 2 + [[None, None]]
reg.inputs.convergence_threshold = [1.e-8] * 2 + [-0.01]
reg.inputs.convergence_window_size = [20] * 2 + [5]
reg.inputs.smoothing_sigmas = [[4, 2, 1]] * 2 + [[1, 0.5, 0]]
reg.inputs.sigma_units = ['vox'] * 3
reg.inputs.shrink_factors = [[3, 2, 1]] * 2 + [[4, 2, 1]]
reg.inputs.use_estimate_learning_rate_once = [True] * 3
reg.inputs.use_histogram_matching = [False] * 2 + [True]
reg.inputs.winsorize_lower_quantile = 0.005
reg.inputs.winsorize_upper_quantile = 0.995
reg.inputs.float = True
reg.inputs.output_warped_image = 'output_warped_image.nii.gz'
reg.inputs.num_threads = 4
reg.plugin_args = {
'qsub_args': '-pe orte 4',
'sbatch_args': '--mem=6G -c 4'
}
register.connect(stripper, 'out_file', reg, 'moving_image')
register.connect(inputnode, 'target_image', reg, 'fixed_image')
"""
Concatenate the affine and ants transforms into a list
"""
merge = Node(Merge(2), iterfield=['in2'], name='mergexfm')
register.connect(convert2itk, 'itk_transform', merge, 'in2')
register.connect(reg, 'composite_transform', merge, 'in1')
"""
Transform the mean image. First to anatomical and then to target
"""
warpmean = Node(ants.ApplyTransforms(), name='warpmean')
warpmean.inputs.input_image_type = 0
warpmean.inputs.interpolation = 'Linear'
warpmean.inputs.invert_transform_flags = [False, False]
warpmean.terminal_output = 'file'
warpmean.inputs.args = '--float'
# warpmean.inputs.num_threads = 4
# warpmean.plugin_args = {'sbatch_args': '--mem=4G -c 4'}
"""
Transform the remaining images. First to anatomical and then to target
"""
warpall = pe.MapNode(
ants.ApplyTransforms(), iterfield=['input_image'], name='warpall')
warpall.inputs.input_image_type = 0
warpall.inputs.interpolation = 'Linear'
warpall.inputs.invert_transform_flags = [False, False]
warpall.terminal_output = 'file'
warpall.inputs.args = '--float'
warpall.inputs.num_threads = 2
warpall.plugin_args = {'sbatch_args': '--mem=6G -c 2'}
"""
Assign all the output files
"""
register.connect(warpmean, 'output_image', outputnode, 'transformed_mean')
register.connect(warpall, 'output_image', outputnode, 'transformed_files')
register.connect(inputnode, 'target_image', warpmean, 'reference_image')
register.connect(inputnode, 'mean_image', warpmean, 'input_image')
register.connect(merge, 'out', warpmean, 'transforms')
register.connect(inputnode, 'target_image', warpall, 'reference_image')
register.connect(inputnode, 'source_files', warpall, 'input_image')
register.connect(merge, 'out', warpall, 'transforms')
"""
Assign all the output files
"""
register.connect(reg, 'warped_image', outputnode, 'anat2target')
register.connect(aparcxfm, 'transformed_file', outputnode, 'aparc')
register.connect(bbregister, 'out_fsl_file', outputnode,
'func2anat_transform')
register.connect(bbregister, 'out_reg_file', outputnode, 'out_reg_file')
register.connect(bbregister, 'min_cost_file', outputnode, 'min_cost_file')
register.connect(mean2anat_mask, 'mask_file', outputnode, 'mean2anat_mask')
register.connect(reg, 'composite_transform', outputnode,
'anat2target_transform')
register.connect(merge, 'out', outputnode, 'transforms')
return register