当前位置: 首页>>代码示例>>Python>>正文


Python Node.clone方法代码示例

本文整理汇总了Python中nipype.Node.clone方法的典型用法代码示例。如果您正苦于以下问题:Python Node.clone方法的具体用法?Python Node.clone怎么用?Python Node.clone使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nipype.Node的用法示例。


在下文中一共展示了Node.clone方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: anisotropy

# 需要导入模块: from nipype import Node [as 别名]
# 或者: from nipype.Node import clone [as 别名]

# Fractional anisotropy (FA) map
tensor2faNode = Node(mrtrix.Tensor2FractionalAnisotropy(), name = 'tensor_2_FA')

# Remove noisy background by multiplying the FA Image with the binary brainmask
mrmultNode = Node(Function(input_names = ['in1', 'in2', 'out_file'],
                           output_names = ['out_file'],
                           function = multiplyMRTrix),
                  name = 'mrmult')

# Eigenvector (EV) map
tensor2vectorNode = Node(mrtrix.Tensor2Vector(), name = 'tensor_2_vector')

# Scale the EV map by the FA Image
scaleEvNode = mrmultNode.clone('scale_ev')

# Mask of single-fibre voxels
erodeNode = Node(mrtrix.Erode(), name = 'erode_wmmask')
erodeNode.inputs.number_of_passes = number_of_passes

cleanFaNode = mrmultNode.clone('multiplyFA_Mask')

thresholdFANode = Node(mrtrix.Threshold(), name = 'threshold_FA')
thresholdFANode.inputs.absolute_threshold_value = absolute_threshold_value

# Response function coefficient
estResponseNode = Node(mrtrix.EstimateResponseForSH(), name = 'estimate_deconv_response')

# CSD computation
csdNode = Node(mrtrix.ConstrainedSphericalDeconvolution(), name = 'compute_CSD')
开发者ID:BrainModes,项目名称:TVB-Pypeline,代码行数:32,代码来源:mrtrix_preproc.py

示例2: group_multregress_openfmri

# 需要导入模块: from nipype import Node [as 别名]
# 或者: from nipype.Node import clone [as 别名]

#.........这里部分代码省略.........
                                                     'cope_id', '.gz']]
                dg.inputs.template_args['varcopes'] = [['model_id', 'task_id', subj_list, 'var', '',
                                                        'var', 'cope_id', '.gz']]
            dg.iterables=('cope_id', cope_ids)
            dg.inputs.sort_filelist = False

            wk.connect(info, 'model_id', dg, 'model_id')
            wk.connect(info, 'task_id', dg, 'task_id')

            model = Node(MultipleRegressDesign(), name='l2model')
            model.inputs.groups = groups
            model.inputs.contrasts = contrasts[idx]
            model.inputs.regressors = regressors_needed[idx]
            
            mergecopes = Node(Merge(dimension='t'), name='merge_copes')
            wk.connect(dg, 'copes', mergecopes, 'in_files')
            
            if flamemodel != 'ols':
                mergevarcopes = Node(Merge(dimension='t'), name='merge_varcopes')
                wk.connect(dg, 'varcopes', mergevarcopes, 'in_files')
            
            mask_file = fsl.Info.standard_image('MNI152_T1_2mm_brain_mask.nii.gz')
            flame = Node(FLAMEO(), name='flameo')
            flame.inputs.mask_file =  mask_file
            flame.inputs.run_mode = flamemodel
            #flame.inputs.infer_outliers = True

            wk.connect(model, 'design_mat', flame, 'design_file')
            wk.connect(model, 'design_con', flame, 't_con_file')
            wk.connect(mergecopes, 'merged_file', flame, 'cope_file')
            if flamemodel != 'ols':
                wk.connect(mergevarcopes, 'merged_file', flame, 'var_cope_file')
            wk.connect(model, 'design_grp', flame, 'cov_split_file')
            
            if nonparametric:
                palm = Node(Function(input_names=['cope_file', 'design_file', 'contrast_file', 
                                                  'group_file', 'mask_file', 'cluster_threshold'],
                                     output_names=['palm_outputs'],
                                     function=run_palm),
                            name='palm')
                palm.inputs.cluster_threshold = 3.09
                palm.inputs.mask_file = mask_file
                palm.plugin_args = {'sbatch_args': '-p om_all_nodes -N1 -c2 --mem=10G', 'overwrite': True}
                wk.connect(model, 'design_mat', palm, 'design_file')
                wk.connect(model, 'design_con', palm, 'contrast_file')
                wk.connect(mergecopes, 'merged_file', palm, 'cope_file')
                wk.connect(model, 'design_grp', palm, 'group_file')
                
            smoothest = Node(SmoothEstimate(), name='smooth_estimate')
            wk.connect(flame, 'zstats', smoothest, 'zstat_file')
            smoothest.inputs.mask_file = mask_file
        
            cluster = Node(Cluster(), name='cluster')
            wk.connect(smoothest,'dlh', cluster, 'dlh')
            wk.connect(smoothest, 'volume', cluster, 'volume')
            cluster.inputs.connectivity = 26
            cluster.inputs.threshold = 2.3
            cluster.inputs.pthreshold = 0.05
            cluster.inputs.out_threshold_file = True
            cluster.inputs.out_index_file = True
            cluster.inputs.out_localmax_txt_file = True
            
            wk.connect(flame, 'zstats', cluster, 'in_file')
    
            ztopval = Node(ImageMaths(op_string='-ztop', suffix='_pval'),
                           name='z2pval')
            wk.connect(flame, 'zstats', ztopval,'in_file')
            
            sinker = Node(DataSink(), name='sinker')
            sinker.inputs.base_directory = os.path.join(out_dir, 'task%03d' % task, contrast[0][0])
            sinker.inputs.substitutions = [('_cope_id', 'contrast'),
                                           ('_maths_', '_reversed_')]
            
            wk.connect(flame, 'zstats', sinker, 'stats')
            wk.connect(cluster, 'threshold_file', sinker, '[email protected]')
            wk.connect(cluster, 'index_file', sinker, '[email protected]')
            wk.connect(cluster, 'localmax_txt_file', sinker, '[email protected]')
            if nonparametric:
                wk.connect(palm, 'palm_outputs', sinker, 'stats.palm')

            if not no_reversal:
                zstats_reverse = Node( BinaryMaths()  , name='zstats_reverse')
                zstats_reverse.inputs.operation = 'mul'
                zstats_reverse.inputs.operand_value = -1
                wk.connect(flame, 'zstats', zstats_reverse, 'in_file')
                
                cluster2=cluster.clone(name='cluster2')
                wk.connect(smoothest, 'dlh', cluster2, 'dlh')
                wk.connect(smoothest, 'volume', cluster2, 'volume')
                wk.connect(zstats_reverse, 'out_file', cluster2, 'in_file')
                
                ztopval2 = ztopval.clone(name='ztopval2')
                wk.connect(zstats_reverse, 'out_file', ztopval2, 'in_file')
                
                wk.connect(zstats_reverse, 'out_file', sinker, '[email protected]')
                wk.connect(cluster2, 'threshold_file', sinker, '[email protected]_thr')
                wk.connect(cluster2, 'index_file',sinker, '[email protected]_index')
                wk.connect(cluster2, 'localmax_txt_file', sinker, '[email protected]_localmax')
            meta_workflow.add_nodes([wk])
    return meta_workflow
开发者ID:rromeo2,项目名称:openfmri,代码行数:104,代码来源:group_multregress_bids.py

示例3: group_onesample_openfmri

# 需要导入模块: from nipype import Node [as 别名]
# 或者: from nipype.Node import clone [as 别名]
def group_onesample_openfmri(dataset_dir,model_id=None,task_id=None,l1output_dir=None,out_dir=None, no_reversal=False):

    wk = Workflow(name='one_sample')
    wk.base_dir = os.path.abspath(work_dir)

    info = Node(util.IdentityInterface(fields=['model_id','task_id','dataset_dir']),
                                        name='infosource')
    info.inputs.model_id=model_id
    info.inputs.task_id=task_id
    info.inputs.dataset_dir=dataset_dir
    
    num_copes=contrasts_num(model_id,task_id,dataset_dir)

    dg = Node(DataGrabber(infields=['model_id','task_id','cope_id'], 
                          outfields=['copes', 'varcopes']),name='grabber')
    dg.inputs.template = os.path.join(l1output_dir,'model%03d/task%03d/*/%scopes/mni/%scope%02d.nii.gz')
    dg.inputs.template_args['copes'] = [['model_id','task_id','', '', 'cope_id']]
    dg.inputs.template_args['varcopes'] = [['model_id','task_id','var', 'var', 'cope_id']]
    dg.iterables=('cope_id',num_copes)

    dg.inputs.sort_filelist = True

    wk.connect(info,'model_id',dg,'model_id')
    wk.connect(info,'task_id',dg,'task_id')

    model = Node(L2Model(), name='l2model')

    wk.connect(dg, ('copes', get_len), model, 'num_copes')

    mergecopes = Node(Merge(dimension='t'), name='merge_copes')
    wk.connect(dg, 'copes', mergecopes, 'in_files')

    mergevarcopes = Node(Merge(dimension='t'), name='merge_varcopes')
    wk.connect(dg, 'varcopes', mergevarcopes, 'in_files')

    mask_file = fsl.Info.standard_image('MNI152_T1_2mm_brain_mask.nii.gz')
    flame = Node(FLAMEO(), name='flameo')
    flame.inputs.mask_file =  mask_file
    flame.inputs.run_mode = 'flame1'

    wk.connect(model, 'design_mat', flame, 'design_file')
    wk.connect(model, 'design_con', flame, 't_con_file')
    wk.connect(mergecopes, 'merged_file', flame, 'cope_file')
    wk.connect(mergevarcopes, 'merged_file', flame, 'var_cope_file')
    wk.connect(model, 'design_grp', flame, 'cov_split_file')

    smoothest = Node(SmoothEstimate(), name='smooth_estimate') 
    wk.connect(flame, 'zstats', smoothest, 'zstat_file')
    smoothest.inputs.mask_file = mask_file

  
    cluster = Node(Cluster(), name='cluster')
    wk.connect(smoothest,'dlh', cluster, 'dlh')
    wk.connect(smoothest, 'volume', cluster, 'volume')
    cluster.inputs.connectivity = 26
    cluster.inputs.threshold=2.3
    cluster.inputs.pthreshold = 0.05
    cluster.inputs.out_threshold_file = True
    cluster.inputs.out_index_file = True
    cluster.inputs.out_localmax_txt_file = True

    wk.connect(flame, 'zstats', cluster, 'in_file')
	 
    ztopval = Node(ImageMaths(op_string='-ztop', suffix='_pval'),
                   name='z2pval')
    wk.connect(flame, 'zstats', ztopval,'in_file')
    
    

    sinker = Node(DataSink(), name='sinker')  
    sinker.inputs.base_directory = os.path.abspath(out_dir)
    sinker.inputs.substitutions = [('_cope_id', 'contrast'),
			            ('_maths__', '_reversed_')]
    
    wk.connect(flame, 'zstats', sinker, 'stats')
    wk.connect(cluster, 'threshold_file', sinker, '[email protected]')
    wk.connect(cluster, 'index_file', sinker, '[email protected]')
    wk.connect(cluster, 'localmax_txt_file', sinker, '[email protected]')
    
    if no_reversal == False:
        zstats_reverse = Node( BinaryMaths()  , name='zstats_reverse')
        zstats_reverse.inputs.operation = 'mul'
        zstats_reverse.inputs.operand_value= -1
        wk.connect(flame, 'zstats', zstats_reverse, 'in_file')

        cluster2=cluster.clone(name='cluster2')
        wk.connect(smoothest,'dlh',cluster2,'dlh')
        wk.connect(smoothest,'volume',cluster2,'volume')
        wk.connect(zstats_reverse,'out_file',cluster2,'in_file')
   
        ztopval2 = ztopval.clone(name='ztopval2')
        wk.connect(zstats_reverse,'out_file',ztopval2,'in_file')

        wk.connect(zstats_reverse,'out_file',sinker,'[email protected]')
        wk.connect(cluster2,'threshold_file',sinker,'[email protected]_thr')
        wk.connect(cluster2,'index_file',sinker,'[email protected]_index')
        wk.connect(cluster2,'localmax_txt_file',sinker,'[email protected]_localmax')

    return wk
开发者ID:YSanchezAraujo,项目名称:openfmri,代码行数:101,代码来源:group_onesample_bids.py

示例4: create_workflow

# 需要导入模块: from nipype import Node [as 别名]
# 或者: from nipype.Node import clone [as 别名]
def create_workflow(files,
                    subject_id,
                    n_vol=0,
                    despike=True,
                    TR=None,
                    slice_times=None,
                    slice_thickness=None,
                    fieldmap_images=[],
                    norm_threshold=1,
                    num_components=6,
                    vol_fwhm=None,
                    surf_fwhm=None,
                    lowpass_freq=-1,
                    highpass_freq=-1,
                    sink_directory=os.getcwd(),
                    FM_TEdiff=2.46,
                    FM_sigma=2,
                    FM_echo_spacing=.7,
                    target_subject=['fsaverage3', 'fsaverage4'],
                    name='resting'):

    wf = Workflow(name=name)

    # Skip starting volumes
    remove_vol = MapNode(fsl.ExtractROI(t_min=n_vol, t_size=-1),
                         iterfield=['in_file'],
                         name="remove_volumes")
    remove_vol.inputs.in_file = files

    # Run AFNI's despike. This is always run, however, whether this is fed to
    # realign depends on the input configuration
    despiker = MapNode(afni.Despike(outputtype='NIFTI_GZ'),
                       iterfield=['in_file'],
                       name='despike')
    #despiker.plugin_args = {'qsub_args': '-l nodes=1:ppn='}

    wf.connect(remove_vol, 'roi_file', despiker, 'in_file')

    # Run Nipy joint slice timing and realignment algorithm
    realign = Node(nipy.SpaceTimeRealigner(), name='realign')
    realign.inputs.tr = TR
    realign.inputs.slice_times = slice_times
    realign.inputs.slice_info = 2

    if despike:
        wf.connect(despiker, 'out_file', realign, 'in_file')
    else:
        wf.connect(remove_vol, 'roi_file', realign, 'in_file')

    # Comute TSNR on realigned data regressing polynomials upto order 2
    tsnr = MapNode(TSNR(regress_poly=2), iterfield=['in_file'], name='tsnr')
    wf.connect(realign, 'out_file', tsnr, 'in_file')

    # Compute the median image across runs
    calc_median = Node(Function(input_names=['in_files'],
                                output_names=['median_file'],
                                function=median,
                                imports=imports),
                       name='median')
    wf.connect(tsnr, 'detrended_file', calc_median, 'in_files')

    # Coregister the median to the surface
    register = Node(freesurfer.BBRegister(),
                    name='bbregister')
    register.inputs.subject_id = subject_id
    register.inputs.init = 'fsl'
    register.inputs.contrast_type = 't2'
    register.inputs.out_fsl_file = True
    register.inputs.epi_mask = True

    # Compute fieldmaps and unwarp using them
    if fieldmap_images:
        fieldmap = Node(interface=EPIDeWarp(), name='fieldmap_unwarp')
        fieldmap.inputs.tediff = FM_TEdiff
        fieldmap.inputs.esp = FM_echo_spacing
        fieldmap.inputs.sigma = FM_sigma
        fieldmap.inputs.mag_file = fieldmap_images[0]
        fieldmap.inputs.dph_file = fieldmap_images[1]
        wf.connect(calc_median, 'median_file', fieldmap, 'exf_file')

        dewarper = MapNode(interface=fsl.FUGUE(), iterfield=['in_file'],
                           name='dewarper')
        wf.connect(tsnr, 'detrended_file', dewarper, 'in_file')
        wf.connect(fieldmap, 'exf_mask', dewarper, 'mask_file')
        wf.connect(fieldmap, 'vsm_file', dewarper, 'shift_in_file')
        wf.connect(fieldmap, 'exfdw', register, 'source_file')
    else:
        wf.connect(calc_median, 'median_file', register, 'source_file')

    # Get the subject's freesurfer source directory
    fssource = Node(FreeSurferSource(),
                    name='fssource')
    fssource.inputs.subject_id = subject_id
    fssource.inputs.subjects_dir = os.environ['SUBJECTS_DIR']

    # Extract wm+csf, brain masks by eroding freesurfer lables and then
    # transform the masks into the space of the median
    wmcsf = Node(freesurfer.Binarize(), name='wmcsfmask')
    mask = wmcsf.clone('anatmask')
    wmcsftransform = Node(freesurfer.ApplyVolTransform(inverse=True,
#.........这里部分代码省略.........
开发者ID:adamatus,项目名称:nipype,代码行数:103,代码来源:rsfmri_preprocessing.py

示例5: create_workflow

# 需要导入模块: from nipype import Node [as 别名]
# 或者: from nipype.Node import clone [as 别名]

#.........这里部分代码省略.........
    # Filter the motion and art confounds and detrend
    filter1 = MapNode(fsl.GLM(out_f_name='F_mcart.nii',
                              out_pf_name='pF_mcart.nii',
                              demean=True),
                      iterfield=['in_file', 'design', 'out_res_name'],
                      name='filtermotion')

    wf.connect(normalize_func, 'normalized_files', filter1, 'in_file')
    wf.connect(normalize_func, ('normalized_files', rename, '_filtermotart'),
               filter1, 'out_res_name')
    wf.connect(createfilter1, 'out_files', filter1, 'design')
    #wf.connect(masktransform, 'transformed_file', filter1, 'mask')

    # Create a filter to remove noise components based on white matter and CSF
    createfilter2 = MapNode(Function(input_names=['realigned_file', 'mask_file',
                                                  'num_components',
                                                  'extra_regressors'],
                                     output_names=['out_files'],
                                     function=extract_noise_components,
                                     imports=imports),
                            iterfield=['realigned_file', 'extra_regressors'],
                            name='makecompcorrfilter')
    createfilter2.inputs.num_components = num_components
    wf.connect(createfilter1, 'out_files', createfilter2, 'extra_regressors')
    wf.connect(filter1, 'out_res', createfilter2, 'realigned_file')
    wf.connect(bin_and_erode, ('out_file', selectN, 2), createfilter2, 'mask_file')

    # Filter noise components from unsmoothed data
    filter2 = MapNode(fsl.GLM(out_f_name='F.nii',
                              out_pf_name='pF.nii',
                              demean=True),
                      iterfield=['in_file', 'design', 'out_res_name'],
                      name='filter_noise_nosmooth')
    wf.connect(normalize_func, 'normalized_files', filter2, 'in_file')
    wf.connect(normalize_func, ('normalized_files', rename, '_unsmooth_cleaned'),
               filter2, 'out_res_name')
    wf.connect(createfilter2, 'out_files', filter2, 'design')
    wf.connect(mask, 'mask_file', filter2, 'mask')

    # Filter noise components from smoothed data
    filter3 = MapNode(fsl.GLM(out_f_name='F.nii',
                              out_pf_name='pF.nii',
                              demean=True),
                      iterfield=['in_file', 'design', 'out_res_name'],
                      name='filter_noise_smooth')
    wf.connect(smooth, ('smoothed_files', rename, '_cleaned'),
               filter3, 'out_res_name')
    wf.connect(smooth, 'smoothed_files', filter3, 'in_file')
    wf.connect(createfilter2, 'out_files', filter3, 'design')
    wf.connect(mask, 'mask_file', filter3, 'mask')

    # Bandpass filter the data
    bandpass1 = Node(Function(input_names=['files', 'lowpass_freq',
                                           'highpass_freq', 'fs'],
                              output_names=['out_files'],
                              function=bandpass_filter,
                              imports=imports),
                     name='bandpass_unsmooth')
    bandpass1.inputs.fs = 1./TR

    bandpass1.inputs.highpass_freq = highpass_freq
    bandpass1.inputs.lowpass_freq = lowpass_freq
    wf.connect(filter2, 'out_res', bandpass1, 'files')

    bandpass2 = bandpass1.clone(name='bandpass_smooth')
    wf.connect(filter3, 'out_res', bandpass2, 'files')

    bandpass = Node(Function(input_names=['in1', 'in2'],
                              output_names=['out_file'],
                              function=merge_files,
                              imports=imports),
                     name='bandpass_merge')
    wf.connect(bandpass1, 'out_files', bandpass, 'in1')
    wf.connect(bandpass2, 'out_files', bandpass, 'in2')

    # Save the relevant data into an output directory
    datasink = Node(interface=DataSink(), name="datasink")
    datasink.inputs.base_directory = sink_directory
    datasink.inputs.container = subject_id
    #datasink.inputs.substitutions = [('_target_subject_', '')]
    #datasink.inputs.regexp_substitutions = (r'(/_.*(\d+/))', r'/run\2')
    wf.connect(realign, 'realignment_parameters', datasink, 'resting.qa.motion')
    wf.connect(art, 'norm_files', datasink, '[email protected]')
    wf.connect(art, 'intensity_files', datasink, '[email protected]')
    wf.connect(art, 'outlier_files', datasink, '[email protected]_files')
    wf.connect(smooth, 'smoothed_files', datasink, 'resting.timeseries.fullpass')
    wf.connect(bin_and_erode, 'out_file', datasink, 'resting.mask_files')
    wf.connect(mask, 'mask_file', datasink, '[email protected]')
    wf.connect(filter1, 'out_f', datasink, '[email protected]_F')
    wf.connect(filter1, 'out_pf', datasink, '[email protected]_pF')
    wf.connect(filter2, 'out_f', datasink, 'resting.qa.compmaps')
    wf.connect(filter2, 'out_pf', datasink, '[email protected]')
    wf.connect(filter3, 'out_f', datasink, '[email protected]')
    wf.connect(filter3, 'out_pf', datasink, '[email protected]')
    wf.connect(bandpass, 'out_file', datasink, 'resting.timeseries.bandpassed')
    wf.connect(createfilter1, 'out_files',
               datasink, '[email protected]')
    wf.connect(createfilter2, 'out_files',
               datasink, '[email protected]')
    return wf
开发者ID:satra,项目名称:rscourse,代码行数:104,代码来源:rsfmri_conn_spm_preprocessing.py

示例6: Node

# 需要导入模块: from nipype import Node [as 别名]
# 或者: from nipype.Node import clone [as 别名]
bbregNode.inputs.out_fsl_file = True
bbregNode.inputs.args = "--tol1d 1e-3"
#bbregNode.inputs.subject_id = reconallFolderName


# ### Surface2Vol

# Transform Left Hemisphere
surf2volNode_lh = Node(freesurfer.utils.Surface2VolTransform(), name = 'surf2vol_lh')
surf2volNode_lh.inputs.hemi = 'lh'
surf2volNode_lh.inputs.mkmask = True
#surf2volNode_lh.inputs.subject_id = reconallFolderName
surf2volNode_lh.inputs.vertexvol_file = 'test'

# Transform right hemisphere
surf2volNode_rh = surf2volNode_lh.clone('surf2vol_rh')
surf2volNode_rh.inputs.hemi = 'rh'

# Merge the hemispheres
mergeHemisNode = Node(fsl.BinaryMaths(), name = 'mergeHemis')
mergeHemisNode.inputs.operation = 'add'
mergeHemisNode.inputs.output_type = 'NIFTI_GZ'


# ### Registration

# Rotate high-res (1mm) WM-border to match dwi data w/o resampling
applyReg_anat2diff_1mm = Node(freesurfer.ApplyVolTransform(), name = 'wmoutline2diff_1mm')
applyReg_anat2diff_1mm.inputs.inverse = True
applyReg_anat2diff_1mm.inputs.interp = 'nearest'
applyReg_anat2diff_1mm.inputs.no_resample = True
开发者ID:JohnGriffiths,项目名称:TVB-Pypeline,代码行数:33,代码来源:preprocSub.py

示例7: Node

# 需要导入模块: from nipype import Node [as 别名]
# 或者: from nipype.Node import clone [as 别名]
bbregNode.inputs.subject_id = reconallFolderName


# ### Surface2Vol

# In[ ]:

# Transform Left Hemisphere
lhWhiteFilename = "lh_white.nii.gz"
surf2volNode_lh = Node(freesurfer.utils.Surface2VolTransform(), name="surf2vol_lh")
surf2volNode_lh.inputs.hemi = "lh"
surf2volNode_lh.inputs.mkmask = True
surf2volNode_lh.inputs.subject_id = reconallFolderName

# Transform right hemisphere
surf2volNode_rh = surf2volNode_lh.clone("surf2vol_rh")
surf2volNode_rh.inputs.hemi = "rh"

# Merge the hemispheres
mergeHemisNode = Node(fsl.BinaryMaths(), name="mergeHemis")
mergeHemisNode.inputs.operation = "add"
mergeHemisNode.inputs.output_type = "NIFTI_GZ"


# ### Registration

# In[ ]:

# Rotate high-res (1mm) WM-border to match dwi data w/o resampling
applyReg_anat2diff_1mm = Node(freesurfer.ApplyVolTransform(), name="wmoutline2diff_1mm")
applyReg_anat2diff_1mm.inputs.inverse = True
开发者ID:gitter-badger,项目名称:TVB-Pypeline,代码行数:33,代码来源:preprocSub.py

示例8: Node

# 需要导入模块: from nipype import Node [as 别名]
# 或者: from nipype.Node import clone [as 别名]
# reconallNode.plugin_args = {'overwrite': True, 'oarsub_args': '-l nodes=1,walltime=16:00:00'}

# Convert the T1 mgz image to nifti format for later usage
# mriConverter = Node(freesurfer.preprocess.MRIConvert(), name = 'convertAparcAseg')
# mriConverter.inputs.out_type = 'niigz'
# mriConverter.inputs.out_orientation = 'RAS'
mriConverter = Node(Function(input_names = ['in_file', 'out_file'],
                            output_names = ['out_file'],
                            function = mri_convert_bm),
                   name = 'convertAparcAseg')

# Convert the Brainmask file
# brainmaskConv = Node(freesurfer.preprocess.MRIConvert(), name = 'convertBrainmask')
# brainmaskConv.inputs.out_type = 'niigz'
# brainmaskConv.inputs.out_orientation = 'RAS'
brainmaskConv = mriConverter.clone('convertBrainmask')


# ### Diffusion Data (dwMRI) preprocessing
# First extract the diffusion vectors and the pulse intensity (bvec and bval)
# Use dcm2nii for this task
dcm2niiNode = Node(Dcm2nii(), name = 'dcm2niiAndBvecs')
dcm2niiNode.inputs.gzip_output = True
dcm2niiNode.inputs.date_in_filename = False
dcm2niiNode.inputs.events_in_filename = False


# Extract the first image of the DTI series i.e. the b0 image
extrctB0Node = Node(Function(input_names = ['dwMriFile'], output_names = ['b0'],
                             function = extractB0), name = 'Extract_b0')
开发者ID:BrainModes,项目名称:TVB-Pypeline,代码行数:32,代码来源:preprocSub.py


注:本文中的nipype.Node.clone方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。