当前位置: 首页>>代码示例>>Python>>正文


Python Network.train方法代码示例

本文整理汇总了Python中network.Network.train方法的典型用法代码示例。如果您正苦于以下问题:Python Network.train方法的具体用法?Python Network.train怎么用?Python Network.train使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在network.Network的用法示例。


在下文中一共展示了Network.train方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run_mnist

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
def run_mnist(epochs, layers, neuron_count):
    """ Run Mnist dataset and output a guess list on the Kaggle test_set

    Parameters
    ----------
    epochs : int
        Number of iterations of the the traininng loop for the whole dataset
    layers : int
        Number of layers (not counting the input layer, but does count output
        layer)
    neuron_count : list
        The number of neurons in each of the layers (in order), does not count
        the bias term

    Attributes
    ----------
    target_values : list
        The possible values for each training vector

    """

    with open('train.csv', 'r') as f:
        reader = csv.reader(f)
        t = list(reader)
        train = [[int(x) for x in y] for y in t[1:]]

    with open('test.csv', 'r') as f:
        reader = csv.reader(f)
        raw_nums = list(reader)
        test_set = [[int(x) for x in y] for y in raw_nums[1:]]

    ans_train = [x[0] for x in train]
    train_set = [x[1:] for x in train]
    ans_train.pop(0)
    train_set.pop(0)

    train_set = utils.resample(train_set, random_state=2)
    ans_train = utils.resample(ans_train, random_state=2)

    network = Network(layers, neuron_count, train_set[0])
    network.train(train_set, ans_train, epochs)

    # For validation purposes
    # guess_list = network.run_unseen(train_set[4000:4500])
    # network.report_results(guess_list, ans_train[4000:4500])
    # guess_list = network.run_unseen(train_set[4500:5000])
    # network.report_results(guess_list, ans_train[4500:5000])

    guess_list = network.run_unseen(test_set)
    with open('digits.txt', 'w') as d:
        for elem in guess_list:
            d.write(str(elem)+'\n')
开发者ID:uglyboxer,项目名称:finnegan,代码行数:54,代码来源:net_launch.py

示例2: test_xor

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
def test_xor():
    n = Network(2, 4, 1)
    train = (
        ([0, 0], [0]),
        ([1, 1], [0]),
        ([0, 1], [1]),
        ([1, 0], [1]),
    )

    for i in xrange(20000):
        inp, out = train[randint(0, 3)]
        n.train(inp, out)

    for inp, out in train:
        assert round(n.test(inp)[0]) == out[0]
开发者ID:nopper,项目名称:pyocr,代码行数:17,代码来源:__init__.py

示例3: test_train

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
 def test_train(self):
     border = 2
     mbs = 500
     n_in = (2*border+1)**2
     tdata = BatchProcessor(
       X_dirpath=config.data_dir_path + 'train/*',
       y_dirpath=config.data_dir_path + 'train_cleaned/',
       batchsize=5000, border=border,
       limit=1, dtype=theano.config.floatX,
       random=True, random_mode='fully',
       rnd=rnd)
     vdata = BatchProcessor(
       X_dirpath=config.data_dir_path + 'train/*',
       y_dirpath=config.data_dir_path + 'train_cleaned/',
       batchsize=5000, border=border,
       limit=1, dtype=theano.config.floatX,
       random=False, rnd=rnd)
     net = Network([
             FullyConnectedLayer(n_in=25, n_out=19, rnd=rnd),
             FullyConnectedLayer(n_in=19, n_out=1, rnd=rnd),
           ], mbs)
     cost = net.train(tdata=tdata, epochs=1, mbs=mbs, eta=0.1,
                      eta_min=0.01, vdata=vdata, lmbda=0.0,
                      momentum=0.95, patience_increase=2,
                      improvement_threshold=0.995,
                      validation_frequency=1, algorithm='rmsprop',
                      early_stoping=False)
     self.assertTrue(float(cost) < 1.0)
开发者ID:codingluke,项目名称:ba-thesis-code,代码行数:30,代码来源:test_network.py

示例4: train

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
def train(job_id, border, n_hidden_layer, eta):
    print "Job ID: %d" % job_id
    metric_recorder = MetricRecorder(config_dir_path='.', job_id=job_id)
    C = {
        'X_dirpath' : '../../../data/train/*',
        'y_dirpath' : '../../../data/train_cleaned/',
        'mini_batch_size' : 500,
        'batchsize' : 500000,
        'limit' : 30,
        'epochs' : 100,
        'patience' : 20000,
        'patience_increase' : 2,
        'improvement_threshold' : 0.995,
        'validation_frequency' : 5000,
        'lmbda' : 0.0,
        'training_size' : None,
        'validation_size' : None,
        'algorithm' : 'RMSProp'
    }

    training_data = BatchProcessor(
        X_dirpath='../../../data/train/*',
        y_dirpath='../../../data/train_cleaned/',
        batchsize=C['batchsize'],
        border=border,
        limit=C['limit'],
        dtype=theano.config.floatX)

    validation_data = BatchProcessor(
        X_dirpath='../../../data/valid/*',
        y_dirpath='../../../data/train_cleaned/',
        batchsize=C['batchsize'],
        border=border,
        limit=C['limit'],
        dtype=theano.config.floatX)

    C['training_size'] = len(training_data)
    C['validation_size'] = len(validation_data)
    print "Training size: %d" % C['training_size']
    print "Validation size: %d" % C['validation_size']

    metric_recorder.add_experiment_metainfo(constants=C)
    metric_recorder.start()

    n_in = (2*border+1)**2
    net = Network([FullyConnectedLayer(n_in=n_in, n_out=n_hidden_layer),
                   FullyConnectedLayer(n_in=n_hidden_layer, n_out=1)],
                  C['mini_batch_size'])

    result = net.train(tdata=training_data, epochs=C['epochs'],
                     mbs=C['mini_batch_size'], eta=eta,
                     vdata=validation_data, lmbda=C['lmbda'],
                     momentum=None, patience_increase=C['patience_increase'],
                     improvement_threshold=C['improvement_threshold'],
                     validation_frequency=C['validation_frequency'],
                     metric_recorder=metric_recorder)

    print 'Time = %f' % metric_recorder.stop()
    print 'Result = %f' % result
    return float(result)
开发者ID:codingluke,项目名称:ba-thesis-code,代码行数:62,代码来源:train.py

示例5: demo

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
def demo():
    params = iho_len(add_set[0])
    first = Network(params[0], params[1], params[2], 5000, 0.08, momentum=0.1)
    first.train(add_set)
    first.test(add_set)

    """
  Used when dealing with entirely binary inputs.
  """
    """
  x = [0, 1, 2, 3, 4, 5, 6]
  y = [9, 8, 7, 6, 4, 3, 3]
  print ''
  for i, j in zip(x, y):
    first.test([[dec_bin(i) + dec_bin(j), dec_bin(i + j)]])
  """
    """
开发者ID:narrowmark,项目名称:nn_calc,代码行数:19,代码来源:nn_calc.py

示例6: main

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
def main():
    args = parseArgs()
        
    network = Network(args.window_size, (args.window_size-1)/2, args.n_hidden_neurons)
    if args.dict:
        print 'Training using individual words from top 1000 dictionary.'
        training_set = datasetDictionary(network)
    else:
        print 'Training using generated strings from dictionary.'
        training_set = datasetGeneratedText(network)

    print 'Your network is being trained..',
    def print_dot():
        print '%d..' % (network.n_trainings+1),
        sys.stdout.flush()
    network.train(training_set, args.n_epochs, callback=print_dot)
    
    pickle.dump(network, args.outfile)
开发者ID:LocusCoeruleus,项目名称:netwhisperer,代码行数:20,代码来源:train.py

示例7: run_scikit_digits

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
def run_scikit_digits(epochs, layers, neuron_count):
    """ Run Handwritten Digits dataset from Scikit-Learn.  Learning set is split
    into 70% for training, 15% for testing, and 15% for validation.

    Parameters
    ----------
    epochs : int
        Number of iterations of the the traininng loop for the whole dataset
    layers : int
        Number of layers (not counting the input layer, but does count output
        layer)
    neuron_count : list
        The number of neurons in each of the layers (in order), does not count
        the bias term

    Attributes
    ----------
    target_values : list
        The possible values for each training vector

    """

    # Imported from linear_neuron
    temp_digits = datasets.load_digits()
    digits = utils.resample(temp_digits.data, random_state=3)
    temp_answers = utils.resample(temp_digits.target, random_state=3)
    # images = utils.resample(temp_digits.images, random_state=0)
    num_of_training_vectors = 1250 
    answers, answers_to_test, validation_answers = temp_answers[:num_of_training_vectors], temp_answers[num_of_training_vectors:num_of_training_vectors+260], temp_answers[num_of_training_vectors+260:]
    training_set, testing_set, validation_set = digits[:num_of_training_vectors], digits[num_of_training_vectors:num_of_training_vectors+260], digits[num_of_training_vectors+260:]

    ###########
    # network.visualization(training_set[10], answers[10])
    # network.visualization(training_set[11], answers[11])
    # network.visualization(training_set[12], answers[12])

    network = Network(layers, neuron_count, training_set[0])
    network.train(training_set, answers, epochs)
    guess_list = network.run_unseen(testing_set)
    network.report_results(guess_list, answers_to_test)
    valid_list = network.run_unseen(validation_set)
    network.report_results(valid_list, validation_answers)
开发者ID:uglyboxer,项目名称:finnegan,代码行数:44,代码来源:net_launch.py

示例8: test_bindec

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
def test_bindec():
    n = Network(4, 6, 16)
    train = {}

    for i in xrange(16):
        bstr = bin(i)[2:]
        bstr = '0' * (4 - len(bstr)) + bstr

        inp = map(int, [c for c in bstr])

        out = [0] * 16
        out[i] = 1

        train[i] = (inp, out)

    for i in xrange(100000):
        n.train(*train[randint(0, 15)])

    for k, (inp, out) in train.items():
        ret = n.test(inp)
        assert ret.index(max(ret)) == k
开发者ID:nopper,项目名称:pyocr,代码行数:23,代码来源:__init__.py

示例9: run

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
def run():
    lines = DataReader.read('car.data.txt')
    training_inputs = DataReader.parse_data(lines)

    print "Initializing Network..."
    my_network = Network(number_of_centers=NUMBER_OF_CENTERS,
                         training=TRAINING_ITERATIONS)
    print "Done."

    print "Starting training. {} centers / {} iterations".\
        format(NUMBER_OF_CENTERS, TRAINING_ITERATIONS)
    my_network.train(training_inputs)
    print "Done."

    # TODO(Accuracy): Test accuracy with non training data.
    right = 0
    total_tests = 100
    for i in range(total_tests):
        chosen = random.choice(training_inputs)
        response = my_network.classify(chosen['inputs'])
        if response == chosen['expected']:
            right += 1
    print "Accuracy => {}/{}".format(right, total_tests)
开发者ID:carlosplf,项目名称:rbf-network,代码行数:25,代码来源:run.py

示例10: Network

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
X_val1 = X_val1.astype('float32')
X_val2 = X_val2.astype('float32')

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
Y_val1 = np_utils.to_categorical(y_val1, nb_classes)
Y_val2 = np_utils.to_categorical(y_val2, nb_classes)

# load the model
nnet = Network()
model = nnet.model

print("32x16 random noise")
t0 = time()
nnet.train([X_train, Y_train], [X_test, Y_test], weight_file=weight_file)
# Training
# for k in range(1, nb_epoch + 1):
#     print("epoch %s/%s:" %(k,nb_epoch))
#     X_train_temp = np.copy(X_train) # Copy to not effect the originals
    
#     # Add noise on later epochs
#     if k > 1:
#         for j in range(0, X_train_temp.shape[0]):
#             X_train_temp[j,0, :, :] = rand_jitter(X_train_temp[j,0,:,:])

#     model.fit(X_train_temp, Y_train, nb_epoch=1, batch_size=batch_size, 
#               validation_data=(X_test, Y_test), 
#               callbacks=[checkpointer])

t1 = time()
开发者ID:shahaf-sameach,项目名称:mnist,代码行数:33,代码来源:main.py

示例11: LabelBinarizer

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
    train_target = LabelBinarizer().fit_transform(train_target)
    valid_target = LabelBinarizer().fit_transform(valid_target)
    test_target = LabelBinarizer().fit_transform(test_target)
    
    # size
    train_size = 50000
    valid_size = 10000
    test_size = 10000

    # train
    epoch = 100
    nn = Network([784, 1500, 700, 10])
    for e in xrange(epoch):
        print "epoch:%d" % e
        for i in xrange(train_size):
            nn.train(train_data[i], train_target[i])
        
        #"""
        correct = 0
        for i in xrange(test_size):
            output = nn.forward_propagation(test_data[i])
            if np.argmax(output) == np.argmax(test_target[i]):
                correct += 1
        print u"correct: %d / %d" % (correct, test_size)
        #"""

    # test
    correct = 0
    for i in xrange(test_size):
        output = nn.forward_propagation(test_data[i])
        if np.argmax(output) == np.argmax(test_target[i]):
开发者ID:riktor,项目名称:NeuralNetworkLaboratory,代码行数:33,代码来源:mnist-test.py

示例12: main

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
def main(argv):

    try:
        opts, args = getopt.getopt(argv,"t:i:n:w:r:c:",["datasetType=","infile=","numHidden=","weightsFile=","rate=","classifyFile="])
    except getopt.GetoptError:
        print "\nIncorrect call. Please try again."
        printError()

    datasetType = None
    numHidden = None
    weightsFile = None
    learnRate = 0.05
    classifyFile = None

    for opt, arg in opts:
        if opt in ("-t", "--datasetType"):
            datasetType = int(arg)
        elif opt in ("-i", "--infile"):
            fileName = str(arg)
        elif opt in ("-n", "--numHidden"):
            numHidden = int(arg)
        elif opt in ("-w", "--weightsFile"):
            weightsFile = str(arg)
        elif opt in ("-r", "--rate"):
            learnRate = float(arg)
        elif opt in ("-c", "--classifyFile"):
            classifyFile = str(arg)

    if numHidden is None:
        print "\nPlease enter the number of neurons in the hidden layer."
        printError()

    if datasetType is None:
        print "\nPlease enter the type of the data set."
        printError()

    datasetFolder = ""

    if (datasetType == 1):
        datasetFolder = "circle/"
    elif (datasetType == 2 or datasetType == 3):
        datasetFolder = "iris/"
    elif (datasetType == 4):
        datasetFolder = "logicalOperators/"

    filePath = dataFolder+datasetFolder+fileName
    fileExists = os.path.isfile(filePath)

    if fileExists:
        f = open(filePath,'r')
    else:
        print "\nThe given input file '%s' doesn't exist.\n" %(filePath)
        sys.exit()

    fileData = readFile(filePath)
    data,numInput,numOuter = processData(fileData,datasetType,True)
    
    iteration = 0
    totalError = 2000

    network = Network(numInput,numHidden,numOuter,learnRate)

    if weightsFile is not None:
        
        filePath = weightsFolder+datasetFolder+weightsFile 

        if os.path.isfile(filePath): 
       
            with open(filePath,'r') as f:
                weights = json.load(f)

            network.setWeights(weights)

            print "\nWeights set."
            network.printWeights()

        else:
            print "\nWeights file %s doesn't exist.\n" %(filePath)
            sys.exit()

    else:
        totalErrors = []

        totalMean = 0

        while (totalError != 0 and totalError > MINERR and iteration < MAXITER):
            totalError = 0
            totalError = network.train(data)
            totalErrors.append(totalError)
            totalMean += totalError
            if (iteration % 100 == 0):
                print "Iteration: %s, totalError: %s" %(iteration,totalError)
            iteration += 1
        
        print totalMean / iteration
        network.printWeights()

        timestr = time.strftime("%Y%m%d%H%M%S")
        errorName = "error_neurons"+str(numHidden)+"_rate"+str(learnRate)+"_"+timestr+"_"
        filePath = errorFolder+datasetFolder+errorName+fileName
#.........这里部分代码省略.........
开发者ID:acsalcedo,项目名称:artificial-neural-network,代码行数:103,代码来源:main.py

示例13: xrange

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
count = 0
theta = 0.0
inputs = []

for i in xrange(5):
    nn = Network(2,4)
    inputs.append([1,0])
    inputs.append([0,1])
    inputs.append([1,1])
    inputs.append([0,0])

    pick = inputs[random.randint(0,len(inputs)-1)]

    known = 1
    if (pick[0] == 1 and pick[1] == 1) or (pick[0] == 0 and pick[1] == 0): known = 0

    result = nn.train(pick,known)
    count += 1

    theta += 0.0025

    mse = 0.0
    for ind,val in enumerate(inputs):
        known = 1
        if (pick[0] == 1 and pick[1] == 1) or (pick[0] == 0 and pick[1] == 0): known = 0
        result = nn.feedForward(pick)
        mse += (result - known)*(result-known)#? - -

        rmse = math.sqrt(mse/4)
        print "Root mean squared error: ", rmse
开发者ID:EricSchles,项目名称:neuralnet,代码行数:32,代码来源:example.py

示例14: Network

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
import glob
import io
from network import Network
from language import Language
from pybrain.tools.validation import CrossValidator
from pybrain.tools.validation import ModuleValidator

languages = []

for g in glob.glob("./data/*.txt"):
    language, num = g.split("/")[-1].split("_")
    languages.append(Language(io.open(g, "r+"), language))

n = Network(languages)
n.train()
n.trainer.verbose = True
n.trainer.trainUntilConvergence()


def correctValFunc(output, target):
    assert len(output) == len(target)

    n_correct = 0

    for idx, instance in enumerate(output):
        # This will find the maximum liklihood language
        classification = instance.argmax(axis=0)
        objective = target[idx].argmax(axis=0)
        if objective == classification:
            n_correct += 1
开发者ID:jcarlosgarcia,项目名称:examples-in-python,代码行数:32,代码来源:crossvalidate.py

示例15: Network

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import train [as 别名]
'''

nw = Network((2,4,1))

trainingset = []
for i in xrange(1000):
    x = random.uniform(-3,3)
    y = random.uniform(-3,3)

    point = ([x,y],[0])

    if np.sqrt(x**2+y**2) < 1:
        point[1][0] = 1
    trainingset.append(point)
    
nw.train(trainingset,50,2,1)

#print nw

x = np.linspace(-5,5,100)
         
y = np.zeros(x.shape)
y2 = np.zeros(x.shape)
y3 = np.zeros(x.shape)    
for i in xrange(x.size):
    outp = nw.compute_outputs((x[i],0))
    y[i] = outp[-1][0]
    outp = nw.compute_outputs((0,x[i]))
    y2[i] = outp[-1][0]
    outp = nw.compute_outputs((x[i]/np.sqrt(2),x[i]/np.sqrt(2)))
    y3[i] = outp[-1][0]
开发者ID:aripekka,项目名称:neuralnet,代码行数:33,代码来源:circletest.py


注:本文中的network.Network.train方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。