当前位置: 首页>>代码示例>>Python>>正文


Python Network.load_weights方法代码示例

本文整理汇总了Python中network.Network.load_weights方法的典型用法代码示例。如果您正苦于以下问题:Python Network.load_weights方法的具体用法?Python Network.load_weights怎么用?Python Network.load_weights使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在network.Network的用法示例。


在下文中一共展示了Network.load_weights方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Network

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import load_weights [as 别名]
from network import Network
from PIL import Image

network = Network(5, 4, 1)
for i in range(10):
    img = Network.get_image('C:\Windows\Fonts\ITCKRIST.TTF')
    network.force_teach(img)
    print('____________________________')
    img = Network.get_image('C:\Windows\Fonts\CHILLER.TTF')
    network.force_teach(img)
    print('____________________________')
    img = Network.get_image('C:\Windows\Fonts\corbeli.ttf')
    network.force_teach(img)
network.save_weights()
network.load_weights('w.txt')
img = Image.open('test.png')
network.cut_digits(img)
print('=======================')
for i in range(len(network.digits)):
    print(network.fill_network(i))
    network.paint_diagram().show()
开发者ID:fraqtop,项目名称:Net,代码行数:23,代码来源:main.py

示例2: print

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import load_weights [as 别名]
#     print("epoch %s/%s:" %(k,nb_epoch))
#     X_train_temp = np.copy(X_train) # Copy to not effect the originals
    
#     # Add noise on later epochs
#     if k > 1:
#         for j in range(0, X_train_temp.shape[0]):
#             X_train_temp[j,0, :, :] = rand_jitter(X_train_temp[j,0,:,:])

#     model.fit(X_train_temp, Y_train, nb_epoch=1, batch_size=batch_size, 
#               validation_data=(X_test, Y_test), 
#               callbacks=[checkpointer])

t1 = time()

# load the best weights
nnet.load_weights(weight_file)

# evaluate model based on the test set (split from the train set)
test_score = nnet.evaluate(X_test, Y_test)
print('Test score:', test_score[0])
print('Test accuracy:', test_score[1])

print("-----------")

# evaluate model based on the validate1 set
val1_score = nnet.evaluate(X_val1, Y_val1)
print('Val1 score:', val1_score[0])
print('Val1 accuracy:', val1_score[1])

print("-----------")
开发者ID:shahaf-sameach,项目名称:mnist,代码行数:32,代码来源:main.py

示例3: print

# 需要导入模块: from network import Network [as 别名]
# 或者: from network.Network import load_weights [as 别名]
  if choise == 't':
    print("Loading data sets...")
    x_data, y_data = load_data_from_file("train.txt")
    
    # split to train and test
    X_train, X_test, Y_train, Y_test = train_test_split(x_data, y_data, test_size=0.1)

    X_val1, Y_val1 = load_data_from_file("validate1.txt")
    X_val2, Y_val2 = load_data_from_file("validate2.txt")

    # train the model
    print("Training model...")
    nnet.train([X_train, Y_train], [X_test, Y_test], nb_epoch=200, weight_file=weight_file)
    # load the best weights
    nnet.load_weights(weight_file)

    print("Evaluating model...")
    # evaluate model based on the test set (split from the train set)
    test_score = nnet.evaluate(X_test, Y_test)
    print('Test score:', test_score[0])
    print('Test accuracy:', test_score[1])

    print("-----------")

    # evaluate model based on the validate1 set
    val1_score = nnet.evaluate(X_val1, Y_val1)
    print('Val1 score:', val1_score[0])
    print('Val1 accuracy:', val1_score[1])

    print("-----------")
开发者ID:shahaf-sameach,项目名称:mnist,代码行数:32,代码来源:main_to_publish.py


注:本文中的network.Network.load_weights方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。