当前位置: 首页>>代码示例>>Python>>正文


Python NeonArgparser.parse_args方法代码示例

本文整理汇总了Python中neon.util.argparser.NeonArgparser.parse_args方法的典型用法代码示例。如果您正苦于以下问题:Python NeonArgparser.parse_args方法的具体用法?Python NeonArgparser.parse_args怎么用?Python NeonArgparser.parse_args使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在neon.util.argparser.NeonArgparser的用法示例。


在下文中一共展示了NeonArgparser.parse_args方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_iterator

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
def test_iterator():
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()
    (X_train, y_train), (X_test, y_test), nclass = load_cifar10_imgs(path=args.data_dir)
    train = DataIterator(X_train, y_train, nclass=nclass, lshape=(3, 32, 32))
    test = DataIterator(X_test, y_test, nclass=nclass, lshape=(3, 32, 32))
    return run(args, train, test)
开发者ID:ferenckulcsar,项目名称:neon,代码行数:9,代码来源:compare.py

示例2: test_iterator

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
def test_iterator():
    print('Testing iterator based data loader')
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()
    (X_train, y_train), (X_test, y_test), nclass = load_cifar10_imgs(path=args.data_dir)
    train = ArrayIterator(X_train, y_train, nclass=nclass, lshape=(3, 32, 32))
    test = ArrayIterator(X_test, y_test, nclass=nclass, lshape=(3, 32, 32))
    return run(args, train, test)
开发者ID:JediKoder,项目名称:neon,代码行数:10,代码来源:compare.py

示例3: get_data

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
def get_data():
    """
    Download bilingual text dataset for Machine translation example.
    """

    # vocab_size and time_steps are hard coded here
    vocab_size = 16384
    time_steps = 20

    # download dataset
    url = 'http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/'
    filename = 'bitexts.tgz'
    size = 1313280000

    parser = NeonArgparser(__doc__)
    args = parser.parse_args(gen_be=False)
    data_dir = os.path.join(args.data_dir, 'nmt')

    _, filepath = Dataset._valid_path_append(data_dir, '', filename)
    if not os.path.exists(filepath):
        Dataset.fetch_dataset(url, filename, filepath, size)

    # extract selected datasets
    datafiles = dict()
    datafiles['un2000'] = ('un2000_pc34.en.gz', 'un2000_pc34.fr.gz')
    datafiles['europarl7'] = ('ep7_pc45.en.gz', 'ep7_pc45.fr.gz')

    extractpath = os.path.join(data_dir, 'bitexts.selected')
    with tarfile.open(filepath, 'r') as tar_ref:
        for dset, files in datafiles.items():
            datasetpath = os.path.join(data_dir, dset)
            # extract the files for dataset, if not already there
            for zipped in files:
                fname = '.'.join(zipped.split('.')[:-1])
                fpath = os.path.join(datasetpath, fname)
                if not os.path.exists(fpath):
                    gzpath = os.path.join(extractpath, zipped)
                    if not os.path.exists(gzpath):
                        select = [ti for ti in tar_ref if os.path.split(ti.name)[1] == zipped]
                        tar_ref.extractall(path=data_dir, members=select)
                    # get contents of gz files
                    if not os.path.exists(datasetpath):
                        os.makedirs(datasetpath)
                    with gzip.open(gzpath, 'r') as fin, open(fpath, 'w') as fout:
                        fout.write(fin.read())
                    os.remove(gzpath)

    if os.path.exists(extractpath):
        os.rmdir(extractpath)

    # process data and save to h5 file
    # loop through all datasets and get train and valid splits
    for dataset in datafiles.keys():

        s_vocab, t_vocab = create_h5py(data_dir, dataset, 'train',
                                       vocab_size=vocab_size, time_steps=time_steps)
        create_h5py(data_dir, dataset, 'valid', s_vocab=s_vocab, t_vocab=t_vocab,
                    time_steps=time_steps)
开发者ID:rlugojr,项目名称:neon,代码行数:60,代码来源:data.py

示例4: test_loader

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
def test_loader():
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()

    train_dir = os.path.join(args.data_dir, 'macrotrain')
    test_dir = os.path.join(args.data_dir, 'macrotest')
    write_batches(args, train_dir, trainimgs, 0)
    write_batches(args, test_dir, testimgs, 1)
    train = ImageLoader(set_name='train', do_transforms=False, inner_size=32,
                        repo_dir=train_dir)
    test = ImageLoader(set_name='validation', do_transforms=False, inner_size=32,
                       repo_dir=test_dir)
    err = run(args, train, test)
    return err
开发者ID:pitseli,项目名称:deepwhales,代码行数:16,代码来源:compare.py

示例5: main

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
def main():
    # parse the command line arguments
    parser = NeonArgparser(__doc__)

    args = parser.parse_args()

    logger = logging.getLogger()
    logger.setLevel(args.log_thresh)

    # Set up batch iterator for training images
    train = ImgMaster(repo_dir="spectroDataTmp", set_name="train", inner_size=400, subset_pct=100)
    val = ImgMaster(
        repo_dir="spectroDataTmp", set_name="validation", inner_size=400, subset_pct=100, do_transforms=False
    )
    test = ImgMaster(
        repo_dir="spectroTestDataTmp", set_name="validation", inner_size=400, subset_pct=100, do_transforms=False
    )

    train.init_batch_provider()
    test.init_batch_provider()

    print "Constructing network..."
    model = constuct_network()

    model.load_weights(args.model_file)

    # Optimizer
    opt = Adadelta()

    # configure callbacks
    valmetric = TopKMisclassification(k=5)
    callbacks = Callbacks(model, train, eval_set=val, metric=valmetric, **args.callback_args)

    cost = GeneralizedCost(costfunc=CrossEntropyMulti())

    # flag = input("Press Enter if you want to begin training process.")
    print "Training network..."
    print args.epochs
    model.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
    mets = model.eval(test, metric=valmetric)

    print "Validation set metrics:"
    print "LogLoss: %.2f, Accuracy: %.1f %%0 (Top-1), %.1f %% (Top-5)" % (
        mets[0],
        (1.0 - mets[1]) * 100,
        (1.0 - mets[2]) * 100,
    )
    test.exit_batch_provider()
    train.exit_batch_provider()
开发者ID:mwoodson1,项目名称:PatternRec-Project,代码行数:51,代码来源:spectrogram_CNN.py

示例6: main

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
def main():
	# parse the command line arguments
	parser = NeonArgparser(__doc__)

	args = parser.parse_args()

	logger = logging.getLogger()
	logger.setLevel(args.log_thresh)

	#Set up batch iterator for training images
	print "Setting up data batch loaders..."
	train = ImgMaster(repo_dir='dataTmp', set_name='train', inner_size=120, subset_pct=100)
	val = ImgMaster(repo_dir='dataTmp', set_name='train', inner_size=120, subset_pct=100, do_transforms=False)
	test = ImgMaster(repo_dir='dataTestTmp', set_name='train', inner_size=120, subset_pct=100, do_transforms=False)

	train.init_batch_provider()
	val.init_batch_provider()
	test.init_batch_provider()

	print "Constructing network..."
	#Create AlexNet architecture
	model = constuct_network()

	#model.load_weights(args.model_file)

	# drop weights LR by 1/250**(1/3) at epochs (23, 45, 66), drop bias LR by 1/10 at epoch 45
	weight_sched = Schedule([22, 44, 65, 90, 97], (1/250.)**(1/3.))
	opt_gdm = GradientDescentMomentum(0.01, 0.9, wdecay=0.005, schedule=weight_sched)
	opt_biases = GradientDescentMomentum(0.04, 1.0, schedule=Schedule([130],.1))
	opt = MultiOptimizer({'default': opt_gdm, 'Bias': opt_biases})

	# configure callbacks
	valmetric = TopKMisclassification(k=5)
	callbacks = Callbacks(model, train, eval_set=val, metric=valmetric, **args.callback_args)

	cost = GeneralizedCost(costfunc=CrossEntropyMulti())

	#flag = input("Press Enter if you want to begin training process.")
	print "Training network..."
	model.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
	mets = model.eval(test, metric=valmetric)

	print 'Validation set metrics:'
	print 'LogLoss: %.2f, Accuracy: %.1f %%0 (Top-1), %.1f %% (Top-5)' % (mets[0], 
																		(1.0-mets[1])*100,
																		(1.0-mets[2])*100)
	test.exit_batch_provider()
	val.exit_batch_provider()
	train.exit_batch_provider()
开发者ID:mwoodson1,项目名称:PatternRec-Project,代码行数:51,代码来源:cropped_CNN.py

示例7: main

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
def main():
    # parse the command line arguments
    parser = NeonArgparser(__doc__)
    parser.add_argument('--output_path', required=True,
                        help='Output path used when training model')
    parser.add_argument('--w2v_path', required=False, default=None,
                        help='Path to GoogleNews w2v file for voab expansion.')
    parser.add_argument('--eval_data_path', required=False, default='./SICK_data',
                        help='Path to the SICK dataset for evaluating semantic relateness')
    parser.add_argument('--max_vocab_size', required=False, default=1000000,
                        help='Limit the vocabulary expansion to fit in GPU memory')
    parser.add_argument('--subset_pct', required=False, default=100,
                        help='subset of training dataset to use (use to retreive \
                        preprocessed data from training)')
    args = parser.parse_args(gen_be=True)

    # load vocab file from training
    _, vocab_file = load_data(args.data_dir, output_path=args.output_path,
                              subset_pct=float(args.subset_pct))
    vocab, _, _ = load_obj(vocab_file)

    vocab_size = len(vocab)
    neon_logger.display("\nVocab size from the dataset is: {}".format(vocab_size))

    index_from = 2  # 0: padding 1: oov
    vocab_size_layer = vocab_size + index_from
    max_len = 30

    # load trained model
    model_dict = load_obj(args.model_file)

    # Vocabulary expansion trick needs to pass the correct vocab set to evaluate (for tokenization)
    if args.w2v_path:
        neon_logger.display("Performing Vocabulary Expansion... Loading W2V...")
        w2v_vocab, w2v_vocab_size = get_w2v_vocab(args.w2v_path,
                                                  int(args.max_vocab_size), cache=True)

        vocab_size_layer = w2v_vocab_size + index_from
        model = load_sent_encoder(model_dict, expand_vocab=True, orig_vocab=vocab,
                                  w2v_vocab=w2v_vocab, w2v_path=args.w2v_path, use_recur_last=True)
        vocab = w2v_vocab
    else:
        # otherwise stick with original vocab size used to train the model
        model = load_sent_encoder(model_dict, use_recur_last=True)

    model.initialize(dataset=(max_len, 1))

    evaluate(model, vocab=vocab, data_path=args.eval_data_path, evaltest=True,
             vocab_size_layer=vocab_size_layer)
开发者ID:NervanaSystems,项目名称:neon,代码行数:51,代码来源:eval_sick.py

示例8: test_loader

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
def test_loader():
    print('Testing image loader')
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()

    train_archive = os.path.join(args.data_dir, traindir + '-ingested')
    test_archive = os.path.join(args.data_dir, testdir + '-ingested')
    write_batches(args, train_archive, traindir, 0)
    write_batches(args, test_archive, testdir, 1)
    train = ImageLoader(set_name='train', do_transforms=False, inner_size=32,
                        scale_range=0, repo_dir=train_archive)
    test = ImageLoader(set_name='validation', do_transforms=False, inner_size=32,
                       scale_range=0, repo_dir=test_archive)
    err = run(args, train, test)
    return err
开发者ID:AnnaZhou,项目名称:neon,代码行数:17,代码来源:compare.py

示例9: test_loader

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
def test_loader():
    print('Testing generic data loader')
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()

    train_path = os.path.join(args.data_dir, traindir + '-ingested')
    test_path = os.path.join(args.data_dir, testdir + '-ingested')

    params = ImageParams(channel_count=3, height=32, width=32)
    common = dict(media_params=params, target_size=1, nclasses=10)
    train = DataLoader('train', repo_dir=os.path.join(args.data_dir, 'train'),
                       **common)
    test = DataLoader('test', repo_dir=os.path.join(args.data_dir, 'test'),
                      **common)
    err = run(args, train, test)
    return err
开发者ID:JediKoder,项目名称:neon,代码行数:18,代码来源:compare.py

示例10: get_args_and_hyperparameters

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
def get_args_and_hyperparameters():
    parser = NeonArgparser(__doc__)
    args = parser.parse_args(gen_be=False)
    
    # Override save path if None
    if args.save_path is None:
        args.save_path = 'frcn_alexnet.pickle'
    
    if args.callback_args['save_path'] is None:
        args.callback_args['save_path'] = args.save_path
    
    if args.callback_args['serialize'] is None:
        args.callback_args['serialize'] = min(args.epochs, 10)
    
    
    # hyperparameters
    args.batch_size = 64
    hyper_params = lambda: None
    hyper_params.use_pre_trained_weights = True # If true, load pre-trained weights to the model
    hyper_params.max_train_imgs = 5000 # Make this smaller in small trial runs to save time
    hyper_params.max_test_imgs = 5000 # Make this smaller in small trial runs to save time
    hyper_params.num_epochs = args.epochs
    hyper_params.samples_per_batch = args.batch_size # The mini-batch size
    # The number of multi-scale samples to make for each input image. These
    # samples are then fed into the network in multiple minibatches.
    hyper_params.samples_per_img = hyper_params.samples_per_batch*7 
    hyper_params.frcn_fine_tune = False
    hyper_params.shuffle = True
    if hyper_params.use_pre_trained_weights:
        # This will typically train in 10-15 epochs. Use a small learning rate
        # and quickly reduce every 5-10 epochs. Use a high momentum since we
        # are close to the minima.
        s = 1e-4
        hyper_params.learning_rate_scale = s
        hyper_params.learning_rate_sched = Schedule(step_config=[15, 20], 
                                        change=[0.1*s, 0.01*s])
        hyper_params.momentum = 0.9
    else: # need to be less aggressive with reducing learning rate if the model is not pre-trained
        s = 1e-2
        hyper_params.learning_rate_scale = 1e-2
        hyper_params.learning_rate_sched = Schedule(step_config=[8, 14, 18, 20], 
                                        change=[0.5*s, 0.1*s, 0.05*s, 0.01*s])
        hyper_params.momentum = 0.1
    hyper_params.class_score_threshold = 0.000001
    hyper_params.score_exponent = 5
    hyper_params.shuffle = True
    return args, hyper_params
开发者ID:623401157,项目名称:ModelZoo,代码行数:49,代码来源:transfer_learning.py

示例11: run_once

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
def run_once(web_input):
    """
    Run forward pass for a single input. Receives input vector from the web form.
    """

    parser = NeonArgparser(__doc__)
    
    args = parser.parse_args()
    
    num_feat = 4
    
    npzfile = np.load('./model/homeapp_preproc.npz')
    mean = npzfile['mean']
    std = npzfile['std']
    mean = np.reshape(mean, (1,mean.shape[0]))
    std = np.reshape(std, (1,std.shape[0]))
    
    # Reloading saved model
    mlp=Model("./model/homeapp_model.prm")
    
    # Horrible terrible hack that should never be needed :-(
    NervanaObject.be.bsz = 1
    
    # Actual: 275,000 Predicted: 362,177 
    #web_input = np.array([51.2246169879,-1.48577399748,223.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0])
    # Actual 185,000 Predicted: 244,526
    #web_input = np.array([51.4395375168,-1.07174234072,5.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0])
    # Actual 231,500 Predicted 281,053
    web_input = np.array([52.2010084131,-2.18181259148,218.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0])
    web_input = np.reshape(web_input, (1,web_input.shape[0]))
    
    web_input[:,:num_feat-1] -= mean[:,1:num_feat]
    web_input[:,:num_feat-1] /= std[:,1:num_feat]
    
    web_test_set = ArrayIterator(X=web_input, make_onehot=False)
    
    web_output = mlp.get_outputs(web_test_set)
    
    #Rescale the output
    web_output *= std[:,0]
    web_output += mean[:,0]
    
    return web_output[0]
开发者ID:ankitvb,项目名称:homeprice,代码行数:45,代码来源:run_mlp.py

示例12: main

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
def main():
	# parse the command line arguments
	parser = NeonArgparser(__doc__)

	args = parser.parse_args()

	logger = logging.getLogger()
	logger.setLevel(args.log_thresh)

	#Set up batch iterator for training images
	train = ImgMaster(repo_dir='dataTmp_optFlow_BW', set_name='train', inner_size=240, subset_pct=100)
	val = ImgMaster(repo_dir='dataTmp_optFlow_BW', set_name='train', inner_size=240, subset_pct=100, do_transforms=False)
	test = ImgMaster(repo_dir='dataTestTmp_optFlow_BW', set_name='train', inner_size=240, subset_pct=100, do_transforms=False)

	train.init_batch_provider()
	val.init_batch_provider()
	test.init_batch_provider()

	print "Constructing network..."
	#Create AlexNet architecture
	model = constuct_network()

	# Optimzer for model
	opt = Adadelta()

	# configure callbacks
	valmetric = TopKMisclassification(k=5)
	callbacks = Callbacks(model, train, eval_set=test, metric=valmetric, **args.callback_args)

	cost = GeneralizedCost(costfunc=CrossEntropyMulti())

	#flag = input("Press Enter if you want to begin training process.")
	print "Training network..."
	model.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
	mets = model.eval(test, metric=valmetric)

	print 'Validation set metrics:'
	print 'LogLoss: %.2f, Accuracy: %.1f %%0 (Top-1), %.1f %% (Top-5)' % (mets[0], 
																		(1.0-mets[1])*100,
																		(1.0-mets[2])*100)
	return 
开发者ID:mwoodson1,项目名称:PatternRec-Project,代码行数:43,代码来源:optFlow_CRNN.py

示例13: NeonArgparser

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
from neon.backends import gen_backend
from neon.initializers import GlorotUniform
from neon.optimizers import GradientDescentMomentum, Schedule
from neon.layers import Conv, Dropout, Activation, Pooling, GeneralizedCost, DataTransform
from neon.transforms import Rectlin, Softmax, CrossEntropyMulti, Normalizer
from neon.models import Model
from neon.callbacks.callbacks import Callbacks
from neon.data import ImgMaster, ImageLoader

# parse the command line arguments
parser = NeonArgparser(__doc__)
parser.add_argument('--deconv', action='store_true',
                    help='save visualization data from deconvolution')
parser.add_argument('--loader_version', default='old', choices=['old', 'new'],
                    help='whether to use old dataloader (ImgMaster) or new (ImageLoader)')
args = parser.parse_args()


# hyperparameters
batch_size = 64

# setup backend
be = gen_backend(backend=args.backend,
                 batch_size=batch_size,
                 rng_seed=args.rng_seed,
                 device_id=args.device_id,
                 datatype=args.datatype)

# setup data provider
img_provider = ImgMaster if args.loader_version == 'old' else ImageLoader
img_set_options = dict(repo_dir=args.data_dir,
开发者ID:ferenckulcsar,项目名称:neon,代码行数:33,代码来源:imagenet_allcnn.py

示例14: NeonArgparser

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
do_plots = True
try:
    import matplotlib.pyplot as plt
    plt.switch_backend('agg')
except ImportError:
    neon_logger.display('matplotlib needs to be installed manually to generate plots needed '
                        'for this example.  Skipping plot generation')
    do_plots = False

# parse the command line arguments
parser = NeonArgparser(__doc__)
parser.add_argument('--img_prefix', type=str,
                    help='prefix for the saved image file names. If None, use '
                         'the model file name')
args = parser.parse_args(gen_be=True)
assert args.model_file is not None, "need a model file to do Fast R-CNN testing"

if args.img_prefix is None:
    args.img_prefix = os.path.splitext(os.path.basename(args.model_file))[0]

output_dir = os.path.join(args.data_dir, 'frcn_output')
if not os.path.isdir(output_dir):
    os.mkdir(output_dir)

# hyperparameters
args.batch_size = 1
n_mb = 40
img_per_batch = args.batch_size
rois_per_img = 5403
开发者ID:JediKoder,项目名称:neon,代码行数:31,代码来源:demo.py

示例15: NeonArgparser

# 需要导入模块: from neon.util.argparser import NeonArgparser [as 别名]
# 或者: from neon.util.argparser.NeonArgparser import parse_args [as 别名]
from neon.backends import gen_backend
from neon.data import Text, load_text
from neon.initializers import Uniform
from neon.layers import GeneralizedCost, LSTM, Affine, GRU, LookupTable
from neon.models import Model
from neon.optimizers import GradientDescentMomentum, Schedule
from neon.transforms import Logistic, Tanh, Softmax, CrossEntropyMulti
from neon.callbacks.callbacks import Callbacks
from neon.util.argparser import NeonArgparser, extract_valid_args

# parse the command line arguments
parser = NeonArgparser(__doc__)
parser.add_argument('--rlayer_type', default='lstm', choices=['gru', 'lstm'],
                    help='type of recurrent layer to use (gru or lstm)')
args = parser.parse_args(gen_be=False)

# hyperparameters from the reference
args.batch_size = 20
time_steps = 20
hidden_size = 200
gradient_clip_norm = 5

# setup backend
be = gen_backend(**extract_valid_args(args, gen_backend))

# download penn treebank
train_path = load_text('ptb-train', path=args.data_dir)
valid_path = load_text('ptb-valid', path=args.data_dir)

开发者ID:qdao,项目名称:neon,代码行数:30,代码来源:word_lstm.py


注:本文中的neon.util.argparser.NeonArgparser.parse_args方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。