当前位置: 首页>>代码示例>>Python>>正文


Python argparser.NeonArgparser类代码示例

本文整理汇总了Python中neon.util.argparser.NeonArgparser的典型用法代码示例。如果您正苦于以下问题:Python NeonArgparser类的具体用法?Python NeonArgparser怎么用?Python NeonArgparser使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了NeonArgparser类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_iterator

def test_iterator():
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()
    (X_train, y_train), (X_test, y_test), nclass = load_cifar10_imgs(path=args.data_dir)
    train = DataIterator(X_train, y_train, nclass=nclass, lshape=(3, 32, 32))
    test = DataIterator(X_test, y_test, nclass=nclass, lshape=(3, 32, 32))
    return run(args, train, test)
开发者ID:ferenckulcsar,项目名称:neon,代码行数:7,代码来源:compare.py

示例2: test_iterator

def test_iterator():
    print('Testing iterator based data loader')
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()
    (X_train, y_train), (X_test, y_test), nclass = load_cifar10_imgs(path=args.data_dir)
    train = ArrayIterator(X_train, y_train, nclass=nclass, lshape=(3, 32, 32))
    test = ArrayIterator(X_test, y_test, nclass=nclass, lshape=(3, 32, 32))
    return run(args, train, test)
开发者ID:JediKoder,项目名称:neon,代码行数:8,代码来源:compare.py

示例3: get_data

def get_data():
    """
    Download bilingual text dataset for Machine translation example.
    """

    # vocab_size and time_steps are hard coded here
    vocab_size = 16384
    time_steps = 20

    # download dataset
    url = 'http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/'
    filename = 'bitexts.tgz'
    size = 1313280000

    parser = NeonArgparser(__doc__)
    args = parser.parse_args(gen_be=False)
    data_dir = os.path.join(args.data_dir, 'nmt')

    _, filepath = Dataset._valid_path_append(data_dir, '', filename)
    if not os.path.exists(filepath):
        Dataset.fetch_dataset(url, filename, filepath, size)

    # extract selected datasets
    datafiles = dict()
    datafiles['un2000'] = ('un2000_pc34.en.gz', 'un2000_pc34.fr.gz')
    datafiles['europarl7'] = ('ep7_pc45.en.gz', 'ep7_pc45.fr.gz')

    extractpath = os.path.join(data_dir, 'bitexts.selected')
    with tarfile.open(filepath, 'r') as tar_ref:
        for dset, files in datafiles.items():
            datasetpath = os.path.join(data_dir, dset)
            # extract the files for dataset, if not already there
            for zipped in files:
                fname = '.'.join(zipped.split('.')[:-1])
                fpath = os.path.join(datasetpath, fname)
                if not os.path.exists(fpath):
                    gzpath = os.path.join(extractpath, zipped)
                    if not os.path.exists(gzpath):
                        select = [ti for ti in tar_ref if os.path.split(ti.name)[1] == zipped]
                        tar_ref.extractall(path=data_dir, members=select)
                    # get contents of gz files
                    if not os.path.exists(datasetpath):
                        os.makedirs(datasetpath)
                    with gzip.open(gzpath, 'r') as fin, open(fpath, 'w') as fout:
                        fout.write(fin.read())
                    os.remove(gzpath)

    if os.path.exists(extractpath):
        os.rmdir(extractpath)

    # process data and save to h5 file
    # loop through all datasets and get train and valid splits
    for dataset in datafiles.keys():

        s_vocab, t_vocab = create_h5py(data_dir, dataset, 'train',
                                       vocab_size=vocab_size, time_steps=time_steps)
        create_h5py(data_dir, dataset, 'valid', s_vocab=s_vocab, t_vocab=t_vocab,
                    time_steps=time_steps)
开发者ID:rlugojr,项目名称:neon,代码行数:58,代码来源:data.py

示例4: test_loader

def test_loader():
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()

    train_dir = os.path.join(args.data_dir, 'macrotrain')
    test_dir = os.path.join(args.data_dir, 'macrotest')
    write_batches(args, train_dir, trainimgs, 0)
    write_batches(args, test_dir, testimgs, 1)
    train = ImageLoader(set_name='train', do_transforms=False, inner_size=32,
                        repo_dir=train_dir)
    test = ImageLoader(set_name='validation', do_transforms=False, inner_size=32,
                       repo_dir=test_dir)
    err = run(args, train, test)
    return err
开发者ID:pitseli,项目名称:deepwhales,代码行数:14,代码来源:compare.py

示例5: main

def main():
	# parse the command line arguments
	parser = NeonArgparser(__doc__)

	args = parser.parse_args()

	logger = logging.getLogger()
	logger.setLevel(args.log_thresh)

	#Set up batch iterator for training images
	print "Setting up data batch loaders..."
	train = ImgMaster(repo_dir='dataTmp', set_name='train', inner_size=120, subset_pct=100)
	val = ImgMaster(repo_dir='dataTmp', set_name='train', inner_size=120, subset_pct=100, do_transforms=False)
	test = ImgMaster(repo_dir='dataTestTmp', set_name='train', inner_size=120, subset_pct=100, do_transforms=False)

	train.init_batch_provider()
	val.init_batch_provider()
	test.init_batch_provider()

	print "Constructing network..."
	#Create AlexNet architecture
	model = constuct_network()

	#model.load_weights(args.model_file)

	# drop weights LR by 1/250**(1/3) at epochs (23, 45, 66), drop bias LR by 1/10 at epoch 45
	weight_sched = Schedule([22, 44, 65, 90, 97], (1/250.)**(1/3.))
	opt_gdm = GradientDescentMomentum(0.01, 0.9, wdecay=0.005, schedule=weight_sched)
	opt_biases = GradientDescentMomentum(0.04, 1.0, schedule=Schedule([130],.1))
	opt = MultiOptimizer({'default': opt_gdm, 'Bias': opt_biases})

	# configure callbacks
	valmetric = TopKMisclassification(k=5)
	callbacks = Callbacks(model, train, eval_set=val, metric=valmetric, **args.callback_args)

	cost = GeneralizedCost(costfunc=CrossEntropyMulti())

	#flag = input("Press Enter if you want to begin training process.")
	print "Training network..."
	model.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
	mets = model.eval(test, metric=valmetric)

	print 'Validation set metrics:'
	print 'LogLoss: %.2f, Accuracy: %.1f %%0 (Top-1), %.1f %% (Top-5)' % (mets[0], 
																		(1.0-mets[1])*100,
																		(1.0-mets[2])*100)
	test.exit_batch_provider()
	val.exit_batch_provider()
	train.exit_batch_provider()
开发者ID:mwoodson1,项目名称:PatternRec-Project,代码行数:49,代码来源:cropped_CNN.py

示例6: main

def main():
    # parse the command line arguments
    parser = NeonArgparser(__doc__)

    args = parser.parse_args()

    logger = logging.getLogger()
    logger.setLevel(args.log_thresh)

    # Set up batch iterator for training images
    train = ImgMaster(repo_dir="spectroDataTmp", set_name="train", inner_size=400, subset_pct=100)
    val = ImgMaster(
        repo_dir="spectroDataTmp", set_name="validation", inner_size=400, subset_pct=100, do_transforms=False
    )
    test = ImgMaster(
        repo_dir="spectroTestDataTmp", set_name="validation", inner_size=400, subset_pct=100, do_transforms=False
    )

    train.init_batch_provider()
    test.init_batch_provider()

    print "Constructing network..."
    model = constuct_network()

    model.load_weights(args.model_file)

    # Optimizer
    opt = Adadelta()

    # configure callbacks
    valmetric = TopKMisclassification(k=5)
    callbacks = Callbacks(model, train, eval_set=val, metric=valmetric, **args.callback_args)

    cost = GeneralizedCost(costfunc=CrossEntropyMulti())

    # flag = input("Press Enter if you want to begin training process.")
    print "Training network..."
    print args.epochs
    model.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
    mets = model.eval(test, metric=valmetric)

    print "Validation set metrics:"
    print "LogLoss: %.2f, Accuracy: %.1f %%0 (Top-1), %.1f %% (Top-5)" % (
        mets[0],
        (1.0 - mets[1]) * 100,
        (1.0 - mets[2]) * 100,
    )
    test.exit_batch_provider()
    train.exit_batch_provider()
开发者ID:mwoodson1,项目名称:PatternRec-Project,代码行数:49,代码来源:spectrogram_CNN.py

示例7: test_loader

def test_loader():
    print('Testing image loader')
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()

    train_archive = os.path.join(args.data_dir, traindir + '-ingested')
    test_archive = os.path.join(args.data_dir, testdir + '-ingested')
    write_batches(args, train_archive, traindir, 0)
    write_batches(args, test_archive, testdir, 1)
    train = ImageLoader(set_name='train', do_transforms=False, inner_size=32,
                        scale_range=0, repo_dir=train_archive)
    test = ImageLoader(set_name='validation', do_transforms=False, inner_size=32,
                       scale_range=0, repo_dir=test_archive)
    err = run(args, train, test)
    return err
开发者ID:AnnaZhou,项目名称:neon,代码行数:15,代码来源:compare.py

示例8: test_loader

def test_loader():
    print('Testing generic data loader')
    parser = NeonArgparser(__doc__)
    args = parser.parse_args()

    train_path = os.path.join(args.data_dir, traindir + '-ingested')
    test_path = os.path.join(args.data_dir, testdir + '-ingested')

    params = ImageParams(channel_count=3, height=32, width=32)
    common = dict(media_params=params, target_size=1, nclasses=10)
    train = DataLoader('train', repo_dir=os.path.join(args.data_dir, 'train'),
                       **common)
    test = DataLoader('test', repo_dir=os.path.join(args.data_dir, 'test'),
                      **common)
    err = run(args, train, test)
    return err
开发者ID:JediKoder,项目名称:neon,代码行数:16,代码来源:compare.py

示例9: get_args_and_hyperparameters

def get_args_and_hyperparameters():
    parser = NeonArgparser(__doc__)
    args = parser.parse_args(gen_be=False)
    
    # Override save path if None
    if args.save_path is None:
        args.save_path = 'frcn_alexnet.pickle'
    
    if args.callback_args['save_path'] is None:
        args.callback_args['save_path'] = args.save_path
    
    if args.callback_args['serialize'] is None:
        args.callback_args['serialize'] = min(args.epochs, 10)
    
    
    # hyperparameters
    args.batch_size = 64
    hyper_params = lambda: None
    hyper_params.use_pre_trained_weights = True # If true, load pre-trained weights to the model
    hyper_params.max_train_imgs = 5000 # Make this smaller in small trial runs to save time
    hyper_params.max_test_imgs = 5000 # Make this smaller in small trial runs to save time
    hyper_params.num_epochs = args.epochs
    hyper_params.samples_per_batch = args.batch_size # The mini-batch size
    # The number of multi-scale samples to make for each input image. These
    # samples are then fed into the network in multiple minibatches.
    hyper_params.samples_per_img = hyper_params.samples_per_batch*7 
    hyper_params.frcn_fine_tune = False
    hyper_params.shuffle = True
    if hyper_params.use_pre_trained_weights:
        # This will typically train in 10-15 epochs. Use a small learning rate
        # and quickly reduce every 5-10 epochs. Use a high momentum since we
        # are close to the minima.
        s = 1e-4
        hyper_params.learning_rate_scale = s
        hyper_params.learning_rate_sched = Schedule(step_config=[15, 20], 
                                        change=[0.1*s, 0.01*s])
        hyper_params.momentum = 0.9
    else: # need to be less aggressive with reducing learning rate if the model is not pre-trained
        s = 1e-2
        hyper_params.learning_rate_scale = 1e-2
        hyper_params.learning_rate_sched = Schedule(step_config=[8, 14, 18, 20], 
                                        change=[0.5*s, 0.1*s, 0.05*s, 0.01*s])
        hyper_params.momentum = 0.1
    hyper_params.class_score_threshold = 0.000001
    hyper_params.score_exponent = 5
    hyper_params.shuffle = True
    return args, hyper_params
开发者ID:623401157,项目名称:ModelZoo,代码行数:47,代码来源:transfer_learning.py

示例10: run_once

def run_once(web_input):
    """
    Run forward pass for a single input. Receives input vector from the web form.
    """

    parser = NeonArgparser(__doc__)
    
    args = parser.parse_args()
    
    num_feat = 4
    
    npzfile = np.load('./model/homeapp_preproc.npz')
    mean = npzfile['mean']
    std = npzfile['std']
    mean = np.reshape(mean, (1,mean.shape[0]))
    std = np.reshape(std, (1,std.shape[0]))
    
    # Reloading saved model
    mlp=Model("./model/homeapp_model.prm")
    
    # Horrible terrible hack that should never be needed :-(
    NervanaObject.be.bsz = 1
    
    # Actual: 275,000 Predicted: 362,177 
    #web_input = np.array([51.2246169879,-1.48577399748,223.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0])
    # Actual 185,000 Predicted: 244,526
    #web_input = np.array([51.4395375168,-1.07174234072,5.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0])
    # Actual 231,500 Predicted 281,053
    web_input = np.array([52.2010084131,-2.18181259148,218.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0])
    web_input = np.reshape(web_input, (1,web_input.shape[0]))
    
    web_input[:,:num_feat-1] -= mean[:,1:num_feat]
    web_input[:,:num_feat-1] /= std[:,1:num_feat]
    
    web_test_set = ArrayIterator(X=web_input, make_onehot=False)
    
    web_output = mlp.get_outputs(web_test_set)
    
    #Rescale the output
    web_output *= std[:,0]
    web_output += mean[:,0]
    
    return web_output[0]
开发者ID:ankitvb,项目名称:homeprice,代码行数:43,代码来源:run_mlp.py

示例11: main

def main():
	# parse the command line arguments
	parser = NeonArgparser(__doc__)

	args = parser.parse_args()

	logger = logging.getLogger()
	logger.setLevel(args.log_thresh)

	#Set up batch iterator for training images
	train = ImgMaster(repo_dir='dataTmp_optFlow_BW', set_name='train', inner_size=240, subset_pct=100)
	val = ImgMaster(repo_dir='dataTmp_optFlow_BW', set_name='train', inner_size=240, subset_pct=100, do_transforms=False)
	test = ImgMaster(repo_dir='dataTestTmp_optFlow_BW', set_name='train', inner_size=240, subset_pct=100, do_transforms=False)

	train.init_batch_provider()
	val.init_batch_provider()
	test.init_batch_provider()

	print "Constructing network..."
	#Create AlexNet architecture
	model = constuct_network()

	# Optimzer for model
	opt = Adadelta()

	# configure callbacks
	valmetric = TopKMisclassification(k=5)
	callbacks = Callbacks(model, train, eval_set=test, metric=valmetric, **args.callback_args)

	cost = GeneralizedCost(costfunc=CrossEntropyMulti())

	#flag = input("Press Enter if you want to begin training process.")
	print "Training network..."
	model.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
	mets = model.eval(test, metric=valmetric)

	print 'Validation set metrics:'
	print 'LogLoss: %.2f, Accuracy: %.1f %%0 (Top-1), %.1f %% (Top-5)' % (mets[0], 
																		(1.0-mets[1])*100,
																		(1.0-mets[2])*100)
	return 
开发者ID:mwoodson1,项目名称:PatternRec-Project,代码行数:41,代码来源:optFlow_CRNN.py

示例12: caption_video

    return manifest_file


def caption_video(infile, caption, outfile):
    cmd = '''ffmpeg  -i {0} -an \
    -vf drawtext="textfile={1}: fontcolor=white: fontsize=16: box=1: [email protected]" \
    -y {2}'''
    proc = subprocess.Popen(cmd.format(infile, caption, outfile), shell=True)
    proc.communicate()


# parse the command line arguments
demo_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'test.cfg')
config_files = [demo_config] if os.path.exists(demo_config) else []

parser = NeonArgparser(__doc__, default_config_files=config_files)
parser.add_argument('--input_video', help='video file')
parser.add_argument('--output_video', help='Video file with overlayed inference hypotheses')
args = parser.parse_args()

assert args.model_file is not None, "need a model file for testing"
model = Model(args.model_file)

assert 'categories' in args.manifest, "Missing categories file"
category_map = {t[0]: t[1] for t in np.genfromtxt(args.manifest['categories'],
                                                  dtype=None, delimiter=',')}

# Make a temporary directory and clean up afterwards
outdir = mkdtemp()
atexit.register(shutil.rmtree, outdir)
caption_file = os.path.join(outdir, 'caption.txt')
开发者ID:rlugojr,项目名称:neon,代码行数:31,代码来源:demo.py

示例13: NeonArgparser

from neon.util.argparser import NeonArgparser, extract_valid_args
from neon.optimizers import GradientDescentMomentum, MultiOptimizer, StepSchedule
from neon.callbacks.callbacks import Callbacks
from neon.util.persist import save_obj, get_data_cache_dir
from objectlocalization import PASCALVOC
from neon.transforms import CrossEntropyMulti, SmoothL1Loss
from neon.layers import Multicost, GeneralizedCostMask
import util
import faster_rcnn
import os

train_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'pascalvoc.cfg')
config_files = [train_config] if os.path.exists(train_config) else []

# parse the command line arguments
parser = NeonArgparser(__doc__, default_config_files=config_files)
parser.add_argument('--width', type=int, default=1000, help='Width of input image')
parser.add_argument('--height', type=int, default=1000, help='Height of input image')
parser.add_argument('--subset_pct', type=float, default=100,
                    help='subset of training dataset to use (percentage)')
args = parser.parse_args(gen_be=False)

# hyperparameters
assert args.batch_size is 1, "Faster-RCNN only supports batch size 1"
assert 'train' in args.manifest

rpn_rois_per_img = 256  # number of rois to sample to train rpn
frcn_rois_per_img = 128  # number of rois to sample to train frcn

# setup backend
be = gen_backend(**extract_valid_args(args, gen_backend))
开发者ID:StevenLOL,项目名称:neon,代码行数:31,代码来源:train.py

示例14: train_mlp

def train_mlp():
	"""
	Train data and save scaling and network weights and biases to file
	to be used by forward prop phase on test data
	"""
	parser = NeonArgparser(__doc__)
	
	args = parser.parse_args()
	
	logger = logging.getLogger()
	logger.setLevel(args.log_thresh)
	
	# hyperparameters
	num_epochs = args.epochs
	
	#preprocessor
	std_scale = preprocessing.StandardScaler(with_mean=True,with_std=True)
	#std_scale = feature_scaler(type='Standardizer',with_mean=True,with_std=True)
	
	#number of non one-hot encoded features, including ground truth
	num_feat = 4
	
	# load up the mnist data set
	# split into train and tests sets
	#load data from csv-files and rescale
	#training
	traindf = pd.DataFrame.from_csv('data/train.csv')
	ncols = traindf.shape[1]
	
	#tmpmat=std_scale.fit_transform(traindf.as_matrix())
	#print std_scale.scale_
	#print std_scale.mean_
	
	tmpmat = traindf.as_matrix()
	#print tmpmat[:,1:num_feat]
	
	tmpmat[:,:num_feat] = std_scale.fit_transform(tmpmat[:,:num_feat])
	X_train = tmpmat[:,1:]
	y_train = np.reshape(tmpmat[:,0],(tmpmat[:,0].shape[0],1))
	
	#validation
	validdf = pd.DataFrame.from_csv('data/validate.csv')
	ncols = validdf.shape[1]
	tmpmat = validdf.as_matrix()
	tmpmat[:,:num_feat] = std_scale.transform(tmpmat[:,:num_feat])
	X_valid = tmpmat[:,1:]
	y_valid = np.reshape(tmpmat[:,0],(tmpmat[:,0].shape[0],1))
	
	#test
	testdf = pd.DataFrame.from_csv('data/test.csv')
	ncols = testdf.shape[1]
	tmpmat = testdf.as_matrix()
	tmpmat[:,:num_feat] = std_scale.transform(tmpmat[:,:num_feat])
	X_test = tmpmat[:,1:]
	y_test = np.reshape(tmpmat[:,0],(tmpmat[:,0].shape[0],1))
	
	# setup a training set iterator
	train_set = CustomDataIterator(X_train, lshape=(X_train.shape[1]), y_c=y_train)
	# setup a validation data set iterator
	valid_set = CustomDataIterator(X_valid, lshape=(X_valid.shape[1]), y_c=y_valid)
	# setup a validation data set iterator
	test_set = CustomDataIterator(X_test, lshape=(X_test.shape[1]), y_c=y_test)
	
	# setup weight initialization function
	init_norm = Xavier()
	
	# setup model layers
	layers = [Affine(nout=X_train.shape[1], init=init_norm, activation=Rectlin()),
	          Dropout(keep=0.5),
	          Affine(nout=X_train.shape[1]/2, init=init_norm, activation=Rectlin()),
			  Linear(nout=1, init=init_norm)]
	
	# setup cost function as CrossEntropy
	cost = GeneralizedCost(costfunc=SmoothL1Loss())
	
	# setup optimizer
	#schedule
	#schedule = ExpSchedule(decay=0.3)
	#optimizer = GradientDescentMomentum(0.0001, momentum_coef=0.9, stochastic_round=args.rounding, schedule=schedule)
	optimizer = Adam(learning_rate=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1.e-8)
	
	# initialize model object
	mlp = Model(layers=layers)
	
	# configure callbacks
	if args.callback_args['eval_freq'] is None:
		args.callback_args['eval_freq'] = 1
	
	# configure callbacks
	callbacks = Callbacks(mlp, eval_set=valid_set, **args.callback_args)
	
	callbacks.add_early_stop_callback(stop_func)
	callbacks.add_save_best_state_callback(os.path.join(args.data_dir, "early_stop-best_state.pkl"))
	
	# run fit
	mlp.fit(train_set, optimizer=optimizer, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
	
	#evaluate model
	print('Evaluation Error = %.4f'%(mlp.eval(valid_set, metric=SmoothL1Metric())))
	print('Test set error = %.4f'%(mlp.eval(test_set, metric=SmoothL1Metric())))
#.........这里部分代码省略.........
开发者ID:ankitvb,项目名称:homeprice,代码行数:101,代码来源:train_mlp.py

示例15: NeonArgparser

Referece:
https://github.com/karpathy/neuraltalk

"""
from neon.backends import gen_backend
from neon.data import load_flickr8k, ImageCaption, ImageCaptionTest
from neon.initializers import Uniform, Constant
from neon.layers import GeneralizedCostMask, LSTM, Affine, Dropout, Sequential, MergeMultistream
from neon.models import Model
from neon.optimizers import RMSProp
from neon.transforms import Logistic, Tanh, Softmax, CrossEntropyMulti
from neon.callbacks.callbacks import Callbacks
from neon.util.argparser import NeonArgparser, extract_valid_args

# parse the command line arguments
parser = NeonArgparser(__doc__)
args = parser.parse_args(gen_be=False)

# hyperparameters
hidden_size = 512
num_epochs = args.epochs

# setup backend
be = gen_backend(**extract_valid_args(args, gen_backend))

# download dataset
data_path = load_flickr8k(path=args.data_dir)  # Other setnames are flickr30k and coco

# load data
train_set = ImageCaption(path=data_path, max_images=-1)
开发者ID:bin2000,项目名称:neon,代码行数:30,代码来源:image_caption.py


注:本文中的neon.util.argparser.NeonArgparser类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。