当前位置: 首页>>代码示例>>Python>>正文


Python Dataset.fa['roi']方法代码示例

本文整理汇总了Python中mvpa.datasets.base.Dataset.fa['roi']方法的典型用法代码示例。如果您正苦于以下问题:Python Dataset.fa['roi']方法的具体用法?Python Dataset.fa['roi']怎么用?Python Dataset.fa['roi']使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mvpa.datasets.base.Dataset的用法示例。


在下文中一共展示了Dataset.fa['roi']方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_featuregroup_mapper

# 需要导入模块: from mvpa.datasets.base import Dataset [as 别名]
# 或者: from mvpa.datasets.base.Dataset import fa['roi'] [as 别名]
def test_featuregroup_mapper():
    ds = Dataset(np.arange(24).reshape(3,8))
    ds.fa['roi'] = [0, 1] * 4
    # just to check
    ds.sa['chunks'] = np.arange(3)

    # correct results
    csamples = [[3, 4], [11, 12], [19, 20]]
    croi = [0, 1]
    cchunks = np.arange(3)

    m = mean_group_feature(['roi'])
    mds = m.forward(ds)
    assert_equal(mds.shape, (3, 2))
    assert_array_equal(mds.samples, csamples)
    assert_array_equal(mds.fa.roi, np.unique([0, 1] * 4))
    # FAs should simply remain the same
    assert_array_equal(mds.sa.chunks, np.arange(3))
开发者ID:geeragh,项目名称:PyMVPA,代码行数:20,代码来源:test_fxmapper.py

示例2: test_featuregroup_mapper

# 需要导入模块: from mvpa.datasets.base import Dataset [as 别名]
# 或者: from mvpa.datasets.base.Dataset import fa['roi'] [as 别名]
def test_featuregroup_mapper():
    ds = Dataset(np.arange(24).reshape(3,8))
    ds.fa['roi'] = [0, 1] * 4
    # just to check
    ds.sa['chunks'] = np.arange(3)

    # correct results
    csamples = [[3, 4], [11, 12], [19, 20]]
    croi = [0, 1]
    cchunks = np.arange(3)

    m = mean_group_feature(['roi'])
    mds = m.forward(ds)
    assert_equal(mds.shape, (3, 2))
    assert_array_equal(mds.samples, csamples)
    assert_array_equal(mds.fa.roi, np.unique([0, 1] * 4))
    # FAs should simply remain the same
    assert_array_equal(mds.sa.chunks, np.arange(3))

    # now without grouping
    m = mean_feature()
    # forwarding just the samples should yield the same result
    assert_array_equal(m.forward(ds.samples),
                       m.forward(ds).samples)

    # And when operating on a dataset with >1D samples, then operate
    # only across "features", i.e. 1st dimension
    ds = Dataset(np.arange(24).reshape(3,2,2,2))
    mapped = ds.get_mapped(m)
    assert_array_equal(m.forward(ds.samples),
                       mapped.samples)
    assert_array_equal(mapped.samples.shape, (3, 2, 2))
    assert_array_equal(mapped.samples, np.mean(ds.samples, axis=1))
    # and still could map back? ;) not ATM, so just to ensure consistency
    assert_raises(NotImplementedError,
                  mapped.a.mapper.reverse, mapped.samples)
    # but it should also work with standard 2d sample arrays
    ds = Dataset(np.arange(24).reshape(3,8))
    mapped = ds.get_mapped(m)
    assert_array_equal(mapped.samples.shape, (3, 1))
开发者ID:esc,项目名称:PyMVPA,代码行数:42,代码来源:test_fxmapper.py


注:本文中的mvpa.datasets.base.Dataset.fa['roi']方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。