当前位置: 首页>>代码示例>>Python>>正文


Python Dataset.a['random']方法代码示例

本文整理汇总了Python中mvpa.datasets.base.Dataset.a['random']方法的典型用法代码示例。如果您正苦于以下问题:Python Dataset.a['random']方法的具体用法?Python Dataset.a['random']怎么用?Python Dataset.a['random']使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mvpa.datasets.base.Dataset的用法示例。


在下文中一共展示了Dataset.a['random']方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_from_wizard

# 需要导入模块: from mvpa.datasets.base import Dataset [as 别名]
# 或者: from mvpa.datasets.base.Dataset import a['random'] [as 别名]
def test_from_wizard():
    samples = np.arange(12).reshape((4, 3)).view(myarray)
    labels = range(4)
    chunks = [1, 1, 2, 2]

    ds = Dataset(samples, sa={'targets': labels, 'chunks': chunks})
    ds.init_origids('both')
    first = ds.sa.origids
    # now do again and check that they get regenerated
    ds.init_origids('both')
    assert_false(first is ds.sa.origids)
    assert_array_equal(first, ds.sa.origids)

    ok_(is_datasetlike(ds))
    ok_(not is_datasetlike(labels))

    # array subclass survives
    ok_(isinstance(ds.samples, myarray))

    ## XXX stuff that needs thought:

    # ds.sa (empty) has this in the public namespace:
    #   add, get, getvalue, has_key, is_set, items, listing, name, names
    #   owner, remove, reset, setvalue, which_set
    # maybe we need some form of leightweightCollection?

    assert_array_equal(ds.samples, samples)
    assert_array_equal(ds.sa.targets, labels)
    assert_array_equal(ds.sa.chunks, chunks)

    # same should work for shortcuts
    assert_array_equal(ds.targets, labels)
    assert_array_equal(ds.chunks, chunks)

    ok_(sorted(ds.sa.keys()) == ['chunks', 'origids', 'targets'])
    ok_(sorted(ds.fa.keys()) == ['origids'])
    # add some more
    ds.a['random'] = 'blurb'

    # check stripping attributes from a copy
    cds = ds.copy() # full copy
    ok_(sorted(cds.sa.keys()) == ['chunks', 'origids', 'targets'])
    ok_(sorted(cds.fa.keys()) == ['origids'])
    ok_(sorted(cds.a.keys()) == ['random'])
    cds = ds.copy(sa=[], fa=[], a=[]) # plain copy
    ok_(cds.sa.keys() == [])
    ok_(cds.fa.keys() == [])
    ok_(cds.a.keys() == [])
    cds = ds.copy(sa=['targets'], fa=None, a=['random']) # partial copy
    ok_(cds.sa.keys() == ['targets'])
    ok_(cds.fa.keys() == ['origids'])
    ok_(cds.a.keys() == ['random'])

    # there is not necessarily a mapper present
    ok_(not ds.a.has_key('mapper'))

    # has to complain about misshaped samples attributes
    assert_raises(ValueError, Dataset.from_wizard, samples, labels + labels)

    # check that we actually have attributes of the expected type
    ok_(isinstance(ds.sa['targets'], ArrayCollectable))

    # the dataset will take care of not adding stupid stuff
    assert_raises(ValueError, ds.sa.__setitem__, 'stupid', np.arange(3))
    assert_raises(ValueError, ds.fa.__setitem__, 'stupid', np.arange(4))
    # or change proper attributes to stupid shapes
    try:
        ds.sa.targets = np.arange(3)
    except ValueError:
        pass
    else:
        ok_(False, msg="Assigning value with improper shape to attribute "
                       "did not raise exception.")
开发者ID:geeragh,项目名称:PyMVPA,代码行数:75,代码来源:test_datasetng.py


注:本文中的mvpa.datasets.base.Dataset.a['random']方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。