本文整理汇总了Python中msmbuilder.MSMLib.invert_assignments方法的典型用法代码示例。如果您正苦于以下问题:Python MSMLib.invert_assignments方法的具体用法?Python MSMLib.invert_assignments怎么用?Python MSMLib.invert_assignments使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类msmbuilder.MSMLib
的用法示例。
在下文中一共展示了MSMLib.invert_assignments方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run
# 需要导入模块: from msmbuilder import MSMLib [as 别名]
# 或者: from msmbuilder.MSMLib import invert_assignments [as 别名]
def run(project, assignments, num_confs_per_state, random_source=None):
"""
Pull random confs from each state in an MSM
Parameters
----------
project : msmbuilder.Project
Used to load up the trajectories, get topology
assignments : np.ndarray, dtype=int
State membership for each frame
num_confs_per_state : int
number of conformations to pull from each state
random_source : numpy.random.RandomState, optional
If supplied, random numbers will be pulled from this random source,
instead of the default, which is np.random. This argument is used
for testing, to ensure that the random number generator always
gives the same stream.
Notes
-----
A new random_source can be initialized by calling numpy.random.RandomState(seed)
with whatever seed you like. See http://stackoverflow.com/questions/5836335/consistenly-create-same-random-numpy-array
for some discussion.
"""
if random_source is None:
random_source = np.random
n_states = max(assignments.flatten()) + 1
logger.info("Pulling %s confs for each of %s confs", num_confs_per_state, n_states)
inv = MSMLib.invert_assignments(assignments)
xyzlist = []
for s in xrange(n_states):
trj, frame = inv[s]
# trj and frame are a list of indices, such that
# project.load_traj(trj[i])[frame[i]] is a frame assigned to state s
for j in xrange(num_confs_per_state):
r = random_source.randint(len(trj))
xyz = Trajectory.read_frame(project.traj_filename(trj[r]), frame[r])
xyzlist.append(xyz)
# xyzlist is now a list of (n_atoms, 3) arrays, and we're going
# to stack it along the third dimension
xyzlist = np.dstack(xyzlist)
# load up the conf to get the topology, put then pop in the new coordinates
output = project.load_conf()
output['XYZList'] = xyzlist
return output
示例2: run
# 需要导入模块: from msmbuilder import MSMLib [as 别名]
# 或者: from msmbuilder.MSMLib import invert_assignments [as 别名]
def run(project, assignments, states, n_per_state, random=None, replacement=True):
"""Extract random conformations from states
Parameters
----------
project : msmbuilder.project
assignments : np.ndarray, shape=[n_trajs, n_confs], dtype=int
states : array_like
The indices of the states to pull from
n_per_state : int
Number of conformations to extract per state
random : np.random.RandomState, optional
Source of randomness
Returns
-------
confs : [msmbuilder.Trajectory]
List of trajectories, each of length n_per_state. confs[i][j] is
the `j`th conformation sampled from state `states[i]`.
"""
if random is None:
random = np.random
results = []
# get a mapping from microstate -> trj/frame
inv = MSMLib.invert_assignments(assignments)
for s in states:
trajs, frames = inv[s]
if len(trajs) != len(frames):
raise RuntimeError('inverse assignments corrupted?')
if replacement:
if len(trajs) < n_per_state:
logger.error("Asked for %d confs per state, but state %d only has %d" % (n_per_state, s, len(trajs)))
# indices of the confs to select
r = random.randint(len(trajs), size=n_per_state)
else:
if len(trajs) < n_per_state:
raise ValueError("Asked for %d confs per state, but state %d only has %d" % (n_per_state, s, len(trajs)))
# draw n_per_state random numbers between `0` and `len(trajs)` without replacement
r = random.permutation(len(trajs))[:n_per_state]
results.append(project.load_frame(trajs[r], frames[r]))
return results
示例3: run_round
# 需要导入模块: from msmbuilder import MSMLib [as 别名]
# 或者: from msmbuilder.MSMLib import invert_assignments [as 别名]
def run_round(checkdata=True):
"""Activate the builder and build new MSMs (if necessary)
First, check to see if there is enough data are to warrant building a
new set of MSMs. Assuming yes, do a joint clustering over all of the
data, and then build MSMs for each forcefield on that state space.
Parameters
----------
checkdata : boolean, optional
If False, skip the checking process
Returns
-------
happened : boolean
True if we actually did a round of MSM building, False otherwise
"""
if checkdata:
logger.info("Checking if sufficient data has been acquired.")
if not is_sufficient_new_data():
return False
else:
logger.info("Skipping check for adequate data.")
# use all the data together to get the cluster centers
generators, db_trajs = joint_clustering()
msmgroup = MSMGroup(trajectories=db_trajs)
for ff in Session.query(Forcefield).all():
trajs = filter(lambda t: t.forcefield == ff, db_trajs)
msm = build_msm(ff, generators=generators, trajs=trajs)
msmgroup.markov_models.append(msm)
# add generators to msmgroup
Session.add(msmgroup)
Session.flush()
msmgroup.populate_default_filenames()
msmgroup.trajectories = db_trajs
msmgroup.n_states = len(generators)
save_file(msmgroup.generators_fn, generators)
for msm in msmgroup.markov_models:
msm.populate_default_filenames()
if hasattr(msm, 'counts'):
save_file(msm.counts_fn, msm.counts)
if hasattr(msm, 'assignments'):
save_file(msm.assignments_fn, msm.assignments)
if hasattr(msm, 'distances'):
save_file(msm.distances_fn, msm.distances)
save_file(msm.inverse_assignments_fn, dict(MSMLib.invert_assignments(msm.assignments)))
# ======================================================================#
# HERE IS WHERE THE ADAPTIVE SAMPLING ALGORITHMS GET CALLED
# The obligation of the adaptive_sampling routine is to set the
# model_selection_weight on each MSM/forcefield and the microstate
# selection weights
# check to make sure that the right fields were populated
try:
Project().adaptive_sampling(Session, msmgroup)
for msm in msmgroup.markov_models:
if not isinstance(msm.model_selection_weight, numbers.Number):
raise ValueError('model selection weight on %s not set correctly' % msm)
if not isinstance(msm.microstate_selection_weights, np.ndarray):
raise ValueError('microstate_selection_weights on %s not set correctly' % msm)
except Exception as e:
logging.error('ADAPTIVE SAMPLING ERROR')
logging.error(e)
sampling.default(Session, msmgroup)
#=======================================================================#
Session.flush()
logger.info("Round completed sucessfully")
return True
示例4: get_random_confs_from_states
# 需要导入模块: from msmbuilder import MSMLib [as 别名]
# 或者: from msmbuilder.MSMLib import invert_assignments [as 别名]
def get_random_confs_from_states(self, assignments, states, num_confs,
replacement=True, random=np.random):
"""
Get random conformations from a particular state (or states) in assignments.
Parameters
----------
assignments : np.ndarray
2D array storing the assignments for a particular MSM
states : int or 1d array_like
state index (or indices) to load random conformations from
num_confs : int or 1d array_like
number of conformations to get from state. The shape should
be the same as the states argument
replacement : bool, optional
whether to sample with replacement or not (default: True)
random : np.random.RandomState, optional
use a particular RandomState for generating the random samples.
this is only useful if you want to get the same samples, i.e.
when debugging something.
Returns
-------
random_confs : msmbuilder.Trajectory or list of
msmbuilder.Trajectory objects
If states is a list, then the output is a list, otherwise a
single trajectory is returned
Trajectory object containing random conformations from the
specified state
"""
def randomize(state_counts, size=1, replacement=True, random=np.random):
"""
This is a helper function for selecting random conformations. It will
select many samples from a discrete, uniform distribution over:
.. math:: \{i\}_{i=1}^{\textnormal{state_counts}}
If replacement==True, then random.randint will be used, otherwise
random.permutation will be used.
Parameters
----------
state_counts : int
number of conformations in the state
size : int, optional
number of samples to draw (size kwarg in np.random.randint)
default: 1
replacement : bool, optional
if True, then we sample with replacement, otherwise we use a
permutation
random : np.random.RandomState, optional
if you want this to behave deterministically then pass a particular
random state, otherwise we will use np.random.
Returns
-------
result : np.ndarray
1d array with samples from the given distribution
Raises
------
ValueError: if size > state_counts and replacement is False, then
it is not possible to sample that many conformations without
replacement
"""
if replacement:
result = random.randint(0, state_counts, size=size)
else:
if size > state_counts:
raise ValueError("Asked for %d conformations from a state "
"with only %d conformations." % (size, state_counts))
else:
result = random.permutation(np.arange(state_counts))[:size]
return result
if isinstance(states, int):
states = np.array([states])
states = np.array(states).flatten()
# if num_confs is just a number, map it to
# each state given in states
if isinstance(num_confs, int):
num_confs = np.array([num_confs] * len(states))
num_confs = np.array(num_confs).flatten()
# if num_confs is length-1, then map that value to each
# state in states
if len(num_confs) == 1:
num_confs = np.array(list(num_confs) * len(states))
if len(num_confs) != len(states):
raise Exception("num_confs must be the same size as num_states")
inv_assignments = MSMLib.invert_assignments(assignments)
state_counts = np.bincount(assignments[np.where(assignments!=-1)])
random_confs = []
#.........这里部分代码省略.........