当前位置: 首页>>代码示例>>Python>>正文


Python msmbuilder.MSMLib类代码示例

本文整理汇总了Python中msmbuilder.MSMLib的典型用法代码示例。如果您正苦于以下问题:Python MSMLib类的具体用法?Python MSMLib怎么用?Python MSMLib使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了MSMLib类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test

    def test(self):

        num_macro = 5

        TC = get("PCCA_ref/tProb.mtx")
        A = get("PCCA_ref/Assignments.Fixed.h5")['arr_0']
        print A

        macro_map, macro_assign = PCCA.run_pcca(num_macro, A, TC)
        r_macro_map = get("PCCA_ref/MacroMapping.dat")

        macro_map = macro_map.astype(np.int)
        r_macro_map = r_macro_map.astype(np.int)

        # The order of macrostates might be different between the reference and
        # new lumping. We therefore find a permutation to match them.
        permutation_mapping = np.zeros(macro_assign.max() + 1, 'int')
        for i in range(num_macro):
            j = np.where(macro_map == i)[0][0]
            permutation_mapping[i] = r_macro_map[j]

        macro_map_permuted = permutation_mapping[macro_map]
        MSMLib.apply_mapping_to_assignments(macro_assign, permutation_mapping)

        r_macro_assign = get("PCCA_ref/MacroAssignments.h5")['arr_0']

        eq(macro_map_permuted, r_macro_map)
        eq(macro_assign, r_macro_assign)
开发者ID:dvanatta,项目名称:msmbuilder,代码行数:28,代码来源:test_wrappers.py

示例2: test_estimate_rate_matrix_1

def test_estimate_rate_matrix_1():
    np.random.seed(42)
    assignments = np.random.randint(2, size=(10, 10))
    counts = MSMLib.get_count_matrix_from_assignments(assignments)
    K = MSMLib.estimate_rate_matrix(counts, assignments).todense()

    correct = np.matrix([[-40.40909091, 0.5], [0.33928571, -50.55357143]])
    eq(K, correct)
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:8,代码来源:test_msmlib.py

示例3: test_apply_mapping_to_assignments_1

def test_apply_mapping_to_assignments_1():
    l = 100
    assignments = np.random.randint(l, size=(10, 10))
    mapping = np.ones(l)

    MSMLib.apply_mapping_to_assignments(assignments, mapping)

    eq(assignments, np.ones((10, 10)))
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:8,代码来源:test_msmlib.py

示例4: test_1

    def test_1(self):

        C = MSMLib.get_count_matrix_from_assignments(self.assignments, 2)
        rc, t, p, m = MSMLib.build_msm(C, symmetrize="MLE", ergodic_trimming=True)

        eq(rc.todense(), np.matrix([[6.46159184, 4.61535527], [4.61535527, 2.30769762]]), decimal=4)
        eq(t.todense(), np.matrix([[0.58333689, 0.41666311], [0.66666474, 0.33333526]]), decimal=4)
        eq(p, np.array([0.61538595, 0.38461405]), decimal=5)
        eq(m, np.array([0, 1]))
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:9,代码来源:test_msmlib.py

示例5: test_get_count_matrix_from_assignments_3

def test_get_count_matrix_from_assignments_3():
    np.random.seed(42)
    assignments = np.random.randint(3, size=(10, 10))

    val = MSMLib.get_count_matrix_from_assignments(assignments, lag_time=2, sliding_window=False).todense()
    eq(val, np.matrix([[5.0, 3.0, 4.0], [2.0, 12.0, 3.0], [4.0, 3.0, 4.0]]))

    val = MSMLib.get_count_matrix_from_assignments(assignments, lag_time=2, sliding_window=True).todense()
    eq(val, np.matrix([[8.0, 9.0, 11.0], [5.0, 18.0, 6.0], [11.0, 5.0, 7.0]]))
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:9,代码来源:test_msmlib.py

示例6: run_pcca_plus

def run_pcca_plus(num_macrostates, assignments, tProb, flux_cutoff=0.0,
    objective_function="crispness",do_minimization=True):
    
    logger.info("Running PCCA+...")
    A, chi, vr, MAP = lumping.pcca_plus(tProb, num_macrostates, flux_cutoff=flux_cutoff,
        do_minimization=do_minimization, objective_function=objective_function)

    MSMLib.apply_mapping_to_assignments(assignments, MAP)    

    return chi, A, MAP, assignments
开发者ID:chrismichel,项目名称:msmbuilder,代码行数:10,代码来源:PCCA.py

示例7: construct_counts_matrix

def construct_counts_matrix(assignments):
    """Build and return a counts matrix from assignments.
    
    Symmetrize either with transpose or MLE based on the value of the
    self.symmetrize variable
        
    Also modifies the assignments file that you pass it to reflect ergodic
    trimming
    
    Parameters
    ----------
    assignments : np.ndarray
        2D array of MSMBuilder assignments
    
    Returns
    -------
    counts : scipy.sparse.csr_matrix
        transition counts
    
    """
        
    n_states  = np.max(assignments.flatten()) + 1
    raw_counts = MSMLib.get_count_matrix_from_assignments(assignments, n_states,
                                               lag_time=Project().lagtime,
                                               sliding_window=True)
        
    ergodic_counts = None
    if Project().trim:
        raise NotImplementedError(('Trimming is not yet supported because '
                                   'we need to keep track of the mapping from trimmed to '
                                   ' untrimmed states for joint clustering to be right'))
        try:
            ergodic_counts, mapping = MSMLib.ergodic_trim(raw_counts)
            MSMLib.apply_mapping_to_assignments(assignments, mapping)
            counts = ergodic_counts
        except Exception as e:
            logger.warning("MSMLib.ergodic_trim failed with message '{0}'".format(e))

    else:
        logger.info("Ignoring ergodic trimming")
        counts = raw_counts
        
    if Project().symmetrize == 'transpose':
        logger.debug('Transpose symmetrizing')
        counts = counts + counts.T
    elif Project().symmetrize == 'mle':
        logger.debug('MLE symmetrizing')
        counts = MSMLib.mle_reversible_count_matrix(counts)
    elif Project().symmetrize == 'none' or (not Project().symmetrize):
        logger.debug('Skipping symmetrization')
    else:
        raise ValueError("Could not understand symmetrization method: %s" % Project().symmetrize)
        
    return counts
开发者ID:rmcgibbo,项目名称:msmaccelerator,代码行数:54,代码来源:Builder.py

示例8: test_trim_states

def test_trim_states():
    
    # run the (just tested) ergodic trim
    counts = scipy.sparse.csr_matrix(np.matrix('2 1 0; 1 2 0; 0 0 1'))
    trimmed, mapping = MSMLib.ergodic_trim(counts)
    
    # now try the segmented method
    states_to_trim = MSMLib.ergodic_trim_indices(counts)
    trimmed_counts = MSMLib.trim_states(states_to_trim, counts, assignments=None)
    
    eq(trimmed.todense(), trimmed_counts.todense())
开发者ID:synapticarbors,项目名称:msmbuilder,代码行数:11,代码来源:test_msmlib.py

示例9: run_pcca

def run_pcca(num_macrostates, assignments, tProb):
    logger.info("Running PCCA...")
    if len(np.unique(assignments[np.where(assignments != -1)])) != tProb.shape[0]:
        raise ValueError('Different number of states in assignments and tProb!')
    MAP = lumping.PCCA(tProb, num_macrostates)

    # MAP the new assignments and save, make sure don't
    # mess up negaitve one's (ie where don't have data)
    MSMLib.apply_mapping_to_assignments(assignments, MAP)

    return MAP, assignments
开发者ID:chrismichel,项目名称:msmbuilder,代码行数:11,代码来源:PCCA.py

示例10: test_get_count_matrix_from_assignments_3

def test_get_count_matrix_from_assignments_3():
    np.random.seed(42)
    assignments = np.random.randint(3, size=(10,10))

    val = MSMLib.get_count_matrix_from_assignments(assignments, lag_time=2, sliding_window=False).todense()
    npt.assert_equal(val, np.matrix([[ 5.,   3.,   4.],
                         [  2.,  12.,   3.],
                         [ 4.,   3.,   4.]]))
                         
    val = MSMLib.get_count_matrix_from_assignments(assignments, lag_time=2, sliding_window=True).todense()
    npt.assert_equal(val, np.matrix([[8.,   9.,  11.],
                          [ 5.,  18.,   6.],
                          [ 11.,   5.,   7.]]))                 
开发者ID:jimsnyderjr,项目名称:msmbuilder,代码行数:13,代码来源:test_msmlib.py

示例11: compare_kyle_to_lutz

    def compare_kyle_to_lutz(self, raw_counts):
        """Kyle wrote the most recent MLE code.  We compare to the previous
        code that was written by Lutz.
        """

        counts = MSMLib.ergodic_trim(raw_counts)[0]

        x_kyle = MSMLib.mle_reversible_count_matrix(counts)
        x_kyle /= x_kyle.sum()

        x_lutz = MSMLib.__mle_reversible_count_matrix_lutz__(counts)
        x_lutz /= x_lutz.sum()

        eq(x_kyle.toarray(), x_lutz.toarray())
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:14,代码来源:test_msmlib.py

示例12: test_apply_mapping_to_assignments_2

def test_apply_mapping_to_assignments_2():
    "preseve the -1s"

    l = 100
    assignments = np.random.randint(l, size=(10, 10))
    assignments[0, 0] = -1
    mapping = np.ones(l)

    correct = np.ones((10, 10))
    correct[0, 0] = -1

    MSMLib.apply_mapping_to_assignments(assignments, mapping)

    eq(assignments, correct)
开发者ID:msmbuilder,项目名称:msmbuilder-legacy,代码行数:14,代码来源:test_msmlib.py

示例13: test_estimate_rate_matrix_2

def test_estimate_rate_matrix_2():
    np.random.seed(42)
    counts_dense = np.random.randint(100, size=(4, 4))
    counts_sparse = scipy.sparse.csr_matrix(counts_dense)

    t_mat_dense = MSMLib.estimate_transition_matrix(counts_dense)
    t_mat_sparse = MSMLib.estimate_transition_matrix(counts_sparse)

    correct = np.array([[0.22368421, 0.40350877, 0.06140351, 0.31140351],
                        [0.24193548, 0.08064516, 0.33064516, 0.34677419],
                        [0.22155689, 0.22155689, 0.26047904, 0.29640719],
                        [0.23469388, 0.02040816, 0.21428571, 0.53061224]])

    eq(t_mat_dense, correct)
    eq(t_mat_dense, np.array(t_mat_sparse.todense()))
开发者ID:lilipeng,项目名称:msmbuilder,代码行数:15,代码来源:test_msmlib.py

示例14: test_estimate_transition_matrix_1

def test_estimate_transition_matrix_1():
    np.random.seed(42)
    count_matrix = np.array([[6, 3, 7], [4, 6, 9], [2, 6, 7]])
    t = MSMLib.estimate_transition_matrix(count_matrix)
    eq(t, np.array([[0.375, 0.1875, 0.4375],
                    [0.21052632, 0.31578947, 0.47368421],
                    [0.13333333, 0.4, 0.46666667]]))
开发者ID:lilipeng,项目名称:msmbuilder,代码行数:7,代码来源:test_msmlib.py

示例15: run_pcca

def run_pcca(num_macrostates, assignments, tProb, output_dir):
    MacroAssignmentsFn = os.path.join(output_dir, "MacroAssignments.h5")
    MacroMapFn = os.path.join(output_dir, "MacroMapping.dat")
    arglib.die_if_path_exists([MacroAssignmentsFn, MacroMapFn])

    logger.info("Running PCCA...")
    MAP = lumping.PCCA(tProb, num_macrostates)

    # MAP the new assignments and save, make sure don't
    # mess up negaitve one's (ie where don't have data)
    MSMLib.apply_mapping_to_assignments(assignments, MAP)

    np.savetxt(MacroMapFn, MAP, "%d")
    msmbuilder.io.saveh(MacroAssignmentsFn, assignments)
    
    logger.info("Saved output to: %s, %s", MacroAssignmentsFn, MacroMapFn)
开发者ID:jimsnyderjr,项目名称:msmbuilder,代码行数:16,代码来源:PCCA.py


注:本文中的msmbuilder.MSMLib类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。