当前位置: 首页>>代码示例>>Python>>正文


Python Basemap.pcolor方法代码示例

本文整理汇总了Python中mpl_toolkits.basemap.Basemap.pcolor方法的典型用法代码示例。如果您正苦于以下问题:Python Basemap.pcolor方法的具体用法?Python Basemap.pcolor怎么用?Python Basemap.pcolor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mpl_toolkits.basemap.Basemap的用法示例。


在下文中一共展示了Basemap.pcolor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_cedata

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def plot_cedata(lats, lons, data, title):
    """
    Plot coefficient of efficiency data.  Lats, lons, and data should have the
    same temporal dimensions.  Lats and lons should denote gridbox edges.
    e.g. data has spatial dimensions of M (lats) x N (lons) then lats and lons
    should have dimensions of M+1 x N+1.

    Parameters
    ----------
    lats: ndarray
        Latitude array (gridbox edges)
    lons: ndarray
        Longitude array (gridbox edges)
    data: ndarray
        CE data
    title: str
        Plot title
    """
    plt.close('all')
    m = Basemap(projection='gall', llcrnrlat=-90, urcrnrlat=90,
                llcrnrlon=0, urcrnrlon=360, resolution='c')
    m.drawcoastlines()
    
    if data.min() < 0:
        color = cm.bwr
    else:
        color = cm.OrRd
        
    m.pcolor(lons, lats, data, latlon=True, cmap=color, vmin=-1, vmax=1)
    m.colorbar()
    plt.title(title)
    plt.show()
开发者ID:frodre,项目名称:pyLIM,代码行数:34,代码来源:LIMTools.py

示例2: nsolLots

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def nsolLots():
	''' Compare nSol estimates to insolation. '''
	# Read the data first:
	nsolTable = readNsol()
	lons = [p['LonW'] for p in nsolTable]
	lats = [p['LatN'] for p in nsolTable]
	sizes = [p['ArrayOutput'] for p in nsolTable]
	insolSizes = [p['TotalAnnualInsolation'] for p in nsolTable]
	bmOptions = {'projection':'merc', 'lon_0':-95, 'lat_0':35, 'llcrnrlat':20, 'urcrnrlat':50,
		'llcrnrlon':-130, 'urcrnrlon':-60, 'rsphere':6371200., 'resolution':'l', 'area_thresh':10000}
	# First Plot
	plt.subplot(211)
	m1 = Basemap(**bmOptions)
	m1.drawcoastlines()
	m1.drawstates()
	m1.drawcountries()
	plt.title('Panel Output')
	mesh1 = m1.pcolor(lons, lats, sizes, latlon=True, tri=True)
	cbar1 = m1.colorbar(mesh1,location='right',pad='5%')
	cbar1.set_label('kWh')
	# Second Plot
	plt.subplot(212)
	m2 = Basemap(**bmOptions)
	m2.drawcoastlines()
	m2.drawstates()
	m2.drawcountries()
	plt.title('Annual Insolation')
	mesh2 = m2.pcolor(lons, lats, insolSizes, latlon=True, tri=True)
	cbar2 = m2.colorbar(mesh2,location='right',pad='5%')
	cbar2.set_label('kWh/m^2')
开发者ID:AccelerateAnalyticsAdmin,项目名称:omf,代码行数:32,代码来源:baseMapPlotting.py

示例3: plot_anomaly_ll

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def plot_anomaly_ll(lat, lon, var):
  #Input lat and lon in degrees!!!
  plt.figure()
  
  #m = Basemap(projection='ortho',lon_0=100,lat_0=60, resolution='l')
  m = Basemap(projection='ortho',lon_0=0,lat_0=90, resolution='l')
  x,y = m(lon, lat)
  
  m.drawcoastlines()
  m.drawmapboundary()
  
  #'''
  #set bounds on var
  maxVal = 100.; minVal = -100.
  var[var>maxVal] = maxVal
  var[var<minVal] = minVal
  #'''
  
  m.pcolor(x,y,var,shading='flat',edgecolors='none',cmap=plt.cm.jet) #cmap=plt.cm.hot_r) #,vmin=100,vmax=1000)
  #m.contour(x,y,var,10,tri=True,shading='flat',edgecolors='none',cmap=plt.cm.jet)
  #m.contourf(x,y,var,10,tri=True,shading='flat',edgecolors='none',cmap=plt.cm.jet)
  #cbar = m.colorbar(plt1,location='bottom',pad="5%")
  #cbar.set_label('\Delta m')
  plt.colorbar()
  plt.show()
开发者ID:nickszap,项目名称:mpas-tools,代码行数:27,代码来源:anomaly.py

示例4: plot_region_pnw

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def plot_region_pnw(data,lat_coord,lon_coord,lat_nw,lat_se,lon_nw,lon_se,title,varfrac):
	plt.clf()
	circles=[30,40,50,60,70]
	meridians=[-130,-120,-110]
	ny,nx=lat_coord.shape
	m = Basemap(projection='stere',lon_0=lon_coord[ny/2,nx/2],lat_0=lat_coord[ny/2,nx/2],resolution='l',llcrnrlon=lon_coord[-1,0],llcrnrlat=lat_coord[-1,0],urcrnrlon=lon_coord[0,-1],urcrnrlat=lat_coord[0,-1])
	x,y=m(lon_coord[:],lat_coord[:])
	
	plt.title('Plotting data for: '+title+'\nvariance:'+str(varfrac))
	try:
		max=np.absolute(data[lat_nw:lat_se,lon_nw:lon_se]).max()
		m.pcolor(x[lat_nw:lat_se,lon_nw:lon_se],y[lat_nw:lat_se,lon_nw:lon_se],data[lat_nw:lat_se,lon_nw:lon_se],vmin=-max,vmax=max)
		plt.colorbar()
	except:
		raise
		m.plot(x[lat_nw:lat_se,lon_nw:lon_se],y[lat_nw:lat_se,lon_nw:lon_se],'r.') # Just put a dot at the x y point
	m.drawcoastlines()
	m.drawcountries()
	y=m.drawstates()
	m.drawparallels(circles)
	m.drawmeridians(meridians)
	try:
		os.remove(output_dir+'/._'+title+'.png')
	except:
		pass
	plt.savefig(output_dir+'/'+title+'.png')
开发者ID:pfuhe1,项目名称:cpdn_analysis,代码行数:28,代码来源:sm_eof.py

示例5: plot_region_pnw

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def plot_region_pnw(data,lat_coord,lon_coord,lat_nw,lat_se,lon_nw,lon_se,region_name):
	plt.clf()
	circles=[30,40,50,60,70]
	meridians=[-130,-120,-110]
	ny,nx=lat_coord.shape
	m = Basemap(projection='stere',lon_0=lon_coord[ny/2,nx/2],lat_0=lat_coord[ny/2,nx/2],resolution='l',llcrnrlon=lon_coord[-1,0],llcrnrlat=lat_coord[-1,0],urcrnrlon=lon_coord[0,-1],urcrnrlat=lat_coord[0,-1])
	x,y=m(lon_coord[:],lat_coord[:])
	
#	shp_info = m.readshapefile('../st99_d00','states',drawbounds=False)
#	print shp_info
#	for i,shapedict in enumerate(m.states_info):
#		if shapedict['NAME']=='California': break
#	calif=np.array(m.states[i])
# TODO rasterise this to turn into a mask
	
	plt.title('Plotting data for region: '+region_name)
	try:
		m.pcolor(x[lat_nw:lat_se,lon_nw:lon_se],y[lat_nw:lat_se,lon_nw:lon_se],data[lat_nw:lat_se,lon_nw:lon_se])
		plt.colorbar()
	except:
		raise
		m.plot(x[lat_nw:lat_se,lon_nw:lon_se],y[lat_nw:lat_se,lon_nw:lon_se],'r.') # Just put a dot at the x y point
	m.drawcoastlines()
	m.drawcountries()
	y=m.drawstates()
	m.drawparallels(circles)
	m.drawmeridians(meridians)
	try:
		os.remove('check_regions/._'+region_name+'.png')
	except:
		pass
	plt.savefig('check_regions/'+region_name+'.png')
开发者ID:pfuhe1,项目名称:cpdn_analysis,代码行数:34,代码来源:pnw_region.py

示例6: plot_mask

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def plot_mask(gridid, Cpos='rho', proj=None, **kwargs):


    # get grid
    if type(gridid).__name__ == 'ROMS_Grid':
        grd = gridid
    else:
        grd = pyroms.grid.get_ROMS_grid(gridid)

    Cpos = str(Cpos)
    print Cpos

    # get grid information
    if Cpos == 'rho':
        lon = grd.hgrid.lon_vert
        lat = grd.hgrid.lat_vert
        mask = grd.hgrid.mask_rho

    elif Cpos == 'u':
        lon = 0.5 * (grd.hgrid.lon_vert[:,:-1] + grd.hgrid.lon_vert[:,1:])
        lat = 0.5 * (grd.hgrid.lat_vert[:,:-1] + grd.hgrid.lat_vert[:,1:])
        mask = grd.hgrid.mask_u

    elif Cpos == 'v':
        lon = 0.5 * (grd.hgrid.lon_vert[:-1,:] + grd.hgrid.lon_vert[1:,:])
        lat = 0.5 * (grd.hgrid.lat_vert[:-1,:] + grd.hgrid.lat_vert[1:,:])
        mask = grd.hgrid.mask_v

    else:
        raise Warning, 'Cpos must be rho, u or v'

    # defined color map
    land_color = kwargs.pop('land_color', (0.6, 1.0, 0.6))
    sea_color = kwargs.pop('sea_color', (0.6, 0.6, 1.0))

    cm = plt.matplotlib.colors.ListedColormap([land_color, sea_color],
                                             name='land/sea')



    if proj is None:
        plt.pcolor(lon, lat, mask, cmap=cm, vmin=0, vmax=1, \
                   edgecolor='k', **kwargs)
        pyroms_toolbox.plot_coast_line(grd)
    else:
        x, y = proj(lon, lat)
        Basemap.pcolor(proj, x, y, mask, cmap=cm, vmin=0, vmax=1, \
                       edgecolor='k', **kwargs)
        pyroms_toolbox.plot_coast_line(grd, proj=proj)

        lon_min = lon.min()
        lon_max = lon.max()
        lat_min = lat.min()
        lat_max = lat.max()

        proj.drawmeridians(np.arange(lon_min,lon_max,(lon_max-lon_min)/5.001), \
                          labels=[0,0,0,1], fmt='%.1f')
        proj.drawparallels(np.arange(lat_min,lat_max,(lat_max-lat_min)/5.001), \
                          labels=[1,0,0,0], fmt='%.1f')
开发者ID:BobTorgerson,项目名称:Pyroms,代码行数:61,代码来源:plot_mask.py

示例7: generate_image

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def generate_image(year, month, xs=500, ys=500, elev=60, azim=-90, colormap=cm.seismic):
    m = Basemap(width=12000000,height=12000000,
                rsphere=(6378137.00,6356752.3142),\
                resolution='l',area_thresh=1000.,projection='lcc',\
                lat_0=45,lon_0=170)

    ssl_loc = '/home/guy/Data/cci-ssl/ESACCI-SEALEVEL-L4-MSLA-MERGED-%04d%02d15000000-fv01.nc' % (year, month)
    lons_proj, lats_proj, XX, YY, sla = reproject_data(ssl_loc,'sla', m, xsize=xs, ysize=ys, filter=0)
    sst_loc = '/mnt/surft/data/SST_CCI_L4_monthly_mean_anomalies/%04d%02d--ESACCI-L4_GHRSST-SSTdepth-OSTIA-GLOB_LT-v02.0-fv01.0_anomalies.nc' %(year, month)
    lons_proj, lats_proj, XX, YY, sst = reproject_data(sst_loc,'sst_anomaly', m, xsize=xs, ysize=ys, filter=None)
    
    min_sst = -4
    max_sst = 4
    
    colors = np.empty(sst.shape, dtype=np.dtype((float, (4))))
    for y in range(sst.shape[1]):
        for x in range(sst.shape[0]):
            val = sst[x, y]
            if(np.ma.getmask(sst[x,y]) == True):
                colors[x,y] = (1,0,0,0)
            else:
                zero_to_one = (val - min_sst) / (max_sst - min_sst)
                colors[x, y] = colormap(zero_to_one)
    
    fig = plt.figure(figsize=(19.2,9.6))
    
    ax = plt.subplot(121, projection='3d')
       
    # ax = fig.gca(projection='3d')
    ax.view_init(elev=elev, azim=azim)
    ax.set_axis_off()
     
    surf = ax.plot_surface(XX, YY, sla, rstride=1, cstride=1, facecolors=colors,#cmap=cm.coolwarm,
                           linewidth=0, antialiased=False)
    ax.set_zlim(-3, 3)
    ax.set_xlim((0.22 * xs, 0.78 * xs))
    ax.set_ylim((0.18 * ys, 0.82 * ys))
    
    ax2d = plt.subplot(122, aspect=1)
    m.bluemarble(ax=ax2d, scale=0.2)
    #m.imshow(sst, ax=ax, cmap=cm.coolwarm)
    x, y = m(lons_proj, lats_proj)
    m.pcolor(x,y, sst, ax=ax2d, cmap=colormap, vmin=min_sst, vmax=max_sst)
    
    #matplotlib.rcParams['contour.negative_linestyle'] = 'dashed'
    m.contour(x,y, sla, np.linspace(-1,1,11), colors='k', ax=ax2d)
    # m.pcolor(XX, YY, sla, ax=ax)
    #ax.pcolormesh(XX,YY,sst, vmin=min_sst, vmax=max_sst, cmap=cm.coolwarm)
    
    
    # ax = fig.gca()
    # surf = ax.pcolormesh(XX,YY,sla, vmin=-limit, vmax=limit)
    # fig.colorbar(surf, shrink=0.5, aspect=5)
    
    fig.tight_layout()
    return fig
开发者ID:guygriffiths,项目名称:cci-visualisations,代码行数:58,代码来源:cci-ssl.py

示例8: plot_2dll

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def plot_2dll(lat, lon, var):  
  #map = Basemap(projection='ortho',lon_0=100,lat_0=60, resolution='l')
  map = Basemap(projection='ortho',lon_0=0,lat_0=90, resolution='l')
  x,y = map(lon, lat)
  
  fig1 = plt.figure(1)
  map.drawcoastlines()
  map.drawmapboundary()
  map.pcolor(x,y,var,shading='flat',edgecolors='none',cmap=plt.cm.jet) #cmap=plt.cm.hot_r) #,vmin=100,vmax=1000)
  #map.contour(x,y,var,10,tri=True,shading='flat',edgecolors='none',cmap=plt.cm.jet)
  #map.contourf(x,y,var,10,tri=True,shading='flat',edgecolors='none',cmap=plt.cm.jet)
  plt.colorbar()
  plt.show()
开发者ID:nickszap,项目名称:mpas-tools,代码行数:15,代码来源:plotPython.py

示例9: bp

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def bp(lon, lat, data, yescbar, region = 'Arctic', ptype = 'contourf', **kwargs):
    
    '''Basic Basemap plot function. Use coordinates (1d or 2d), data and name of the region
     as an input and plot data. Region defines in the "regbase" function.

     You can also provide any argument for matplotlib plotting functions.

     Usage:
         bp(lon, lat, data, region = 'Arctic', ptype = 'contourf', **kwargs)
     
     Input:
        lon         - 2D or 1D array of longitudes
        lat         - 2D or 1D array of latitudes
        data        - 2D array of scalar data.
        region      - one of the predefined regions (for list of regions see the "regbase" function)
        ptype       - plot type (contour, contourf, pcolor, pcolormesh)
        **kwargs    - arguments for plotting functions

     Output:
        Basemap instance.
    '''
    
    mapDict = regbase(region)

    # Create Basemap instance
    if mapDict['projection'] == 'npstere':
        m = Basemap(projection=mapDict['projection'],boundinglat=mapDict['boundinglat'],\
                    lon_0=mapDict['lon_0'],resolution=mapDict['resolution'])
    
    # Check if we have proper number of dimensions for lon (and hopefully lat as well)
    if lon.shape.__len__() == 1:
        lon, lat = np.meshgrid(lon, lat)
    elif lon.shape.__len__() > 2:
        raise Exception("Coordinate variables (lon) has too many dimensions")
    
    # Convert lat/lon to map coordinates
    x, y = m(lon, lat)

    # Make the map look better
    m.fillcontinents(color='gray',lake_color='gray')
    m.drawparallels(np.arange(-80.,81.,20.))
    m.drawmeridians(np.arange(-180.,181.,20.))
    m.drawmapboundary(fill_color='white')
    
    # Draw values on the map
    if ptype == 'contourf':
        cs = m.contourf(x,y,data,**kwargs)
        if yescbar == True:
            cbar3 = plt.colorbar(cs)
        return m
    elif ptype == 'pcolormesh':
        cs = m.pcolormesh(x,y,data,**kwargs)
    elif ptype == 'contour':
        cs = m.contour(x,y,data,**kwargs)
    elif ptype == 'pcolor':
        cs = m.pcolor(x,y,data,**kwargs)
    else:
        raise Exception("Plot type not supported. Valid plot types are: contour, contourf, pcolor, pcolormesh ")
    
    return m
开发者ID:AlessandroMozzato,项目名称:python_functions,代码行数:62,代码来源:plottransect.py

示例10: hammer_plot_density

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def hammer_plot_density(density, xmax, xmin, ymax, ymin, no_ra, no_dec, targ_flag, obs_flag, pass_flag):
    if targ_flag ==1:
        targ_type = 'LRG'
    if targ_flag==2:
        targ_type = 'ELG'
    if targ_flag==4:
        targ_type = 'QSO'
    if obs_flag==1:
        name_obs = 'source'
    if obs_flag==2:
        name_obs = 'true'
    
    outfile = "~/DESIhub/target_density_%s_%s_pass%d.pdf" %(targ_type, name_obs, pass_flag)
    bin_size_x = (xmax-xmin)/no_ra
    bin_size_y = (ymax-ymin)/no_dec
    y = np.linspace(ymin, ymax, no_dec)
    x = np.linspace(xmin, xmax, no_ra)
    [X,Y] = np.meshgrid(x,y);
    X=np.transpose(X)
    Y=np.transpose(Y)
    f = plt.figure()
    m = Basemap(projection='moll',lon_0=180,resolution='c')
    cs = m.pcolor(X, Y, density,  cmap=plt.cm.jet,latlon=True)
    cbar = m.colorbar(cs,location='bottom',pad="5%")
    f.savefig(outfile, bbox_inches='tight')
开发者ID:desihub,项目名称:LSS,代码行数:27,代码来源:read_potential_tile_targets.py

示例11: plot_satellite_image

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def plot_satellite_image(filename):
    """takes in a file and outputs a plot of satellite"""
    rootgrp = Dataset(filename, "a", format="NETCDF4")
    lons = rootgrp.variables["lon"][:]
    lats = rootgrp.variables["lat"][:]
    data = rootgrp.variables["data"][:]
    rootgrp.close()  # need to close before you can open again

    # Get some parameters for the Stereographic Projection
    m = Basemap(
        width=800000,
        height=800000,  # create a basemap object with these parameters
        resolution="l",
        projection="stere",
        lat_ts=40,
        lat_0=39.5,
        lon_0=-104.5,
    )

    xi, yi = m(lons, lats)  # map onton x and y for plotting
    plt.figure(figsize=(10, 10))  # Plot Data
    cs = m.pcolor(xi, yi, np.squeeze(data))  # data is 1 x 14 x 36, squeeze makes it 14 x 36

    m.drawparallels(np.arange(-80.0, 81.0, 1.0), labels=[1, 0, 0, 0], fontsize=10)  # Add Grid Lines
    m.drawmeridians(np.arange(-180.0, 181.0, 1.0), labels=[0, 0, 0, 1], fontsize=10)  # Add Grid Lines
    m.drawstates(linewidth=3)  # Add state boundaries

    cbar = m.colorbar(cs, location="bottom", pad="10%")  # Add Colorbar
    plt.title("GOES 15 - Sensor 1")  # Add Title
    plt.show()
开发者ID:scottlittle,项目名称:SatelliteSolar,代码行数:32,代码来源:data_helper_functions.py

示例12: worldmap_velocitymap

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def worldmap_velocitymap(params,plotName):
    """@worldmap plot

    @param params
        seismon params dictionary
    @param plotName
        name of plot
    """

    plt.figure(figsize=(15,10))
    plt.axes([0,0,1,1])

    # lon_0 is central longitude of robinson projection.
    # resolution = 'c' means use crude resolution coastlines.
    m = Basemap(projection='robin',lon_0=0,resolution='c')
    #set a background colour
    m.drawmapboundary(fill_color='#85A6D9')

    # draw coastlines, country boundaries, fill continents.
    m.fillcontinents(color='white',lake_color='#85A6D9')
    m.drawcoastlines(color='#6D5F47', linewidth=.4)
    m.drawcountries(color='#6D5F47', linewidth=.4)

    # draw lat/lon grid lines every 30 degrees.
    m.drawmeridians(np.arange(-180, 180, 30), color='#bbbbbb',zorder=3)
    m.drawparallels(np.arange(-90, 90, 30), color='#bbbbbb',zorder=3)

    velocityFile = '/home/mcoughlin/Seismon/velocity_maps/GR025_1_GDM52.pix'
    velocity_map = np.loadtxt(velocityFile)
    base_velocity = 3.59738

    lats = velocity_map[:,0]
    lons = velocity_map[:,1]
    velocity = 1000 * (1 + 0.01*velocity_map[:,3])*base_velocity

    lats_unique = np.unique(lats)
    lons_unique = np.unique(lons)
    velocity_matrix = np.zeros((len(lats_unique),len(lons_unique)))

    for k in xrange(len(lats)):
        index1 = np.where(lats[k] == lats_unique)
        index2 = np.where(lons[k] == lons_unique)
        velocity_matrix[index1[0],index2[0]] = velocity[k]

    lons_grid,lats_grid = np.meshgrid(lons_unique,lats_unique)
    x, y = m(lons_grid, lats_grid) # compute map proj coordinates.
    # draw filled contours.

    cs = m.pcolor(x,y,velocity_matrix,alpha=0.5,zorder=2)
    colorbar_label = "Velocity [m/s]"

    try:
       cbar=plt.colorbar()
       cbar.set_label(colorbar_label)
    except:
       pass
    plt.show()
    plt.savefig(plotName,dpi=200)
    plt.close('all')
开发者ID:mcoughlin,项目名称:gwpy,代码行数:61,代码来源:seismon_eqmon_plot.py

示例13: example_sfcUpdate_horiz

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def example_sfcUpdate_horiz(time,var):
  #The surfaceUpdate.nc files don't have all of the same fields/dimensions,...
  #so we get errors when attempting to access them
  
  import netCDF4
  
  ncfname = '/arctic1/nick/cases/163842/r2614/sfc_update.nc'
  ncfnameG = '/arctic1/nick/cases/163842/r2614/output.163842.2006-07-08_00.00.00.nc' #used for grid since, say, sfc_update.nc doesn't have this info
  dataG = netCDF4.Dataset(ncfnameG,'r')
  data = netCDF4.Dataset(ncfname,'r')
  nCells = len(data.dimensions['nCells'])
  
  lat = dataG.variables['latCell'][:]*180./np.pi; #in degrees
  lon = dataG.variables['lonCell'][:]*180./np.pi;
  
  level = 0; #time=20; var='sst';
  var = data.variables[var][time,:];# minVar = np.amin(var); maxVar = np.amax(var);
  
  #map = Basemap(projection='ortho',lon_0=-105,lat_0=40, resolution='l')
  map = Basemap(projection='ortho',lon_0=-100,lat_0=60, resolution='l')
  x,y = map(lon, lat)
  
  fig1 = plt.figure(1)
  map.drawcoastlines()
  map.drawmapboundary()
  map.pcolor(x,y,var,tri=True,shading='flat',edgecolors='none',cmap=plt.cm.jet) #cmap=plt.cm.hot_r) #,vmin=100,vmax=1000)
  #map.contour(x,y,var,10,tri=True,shading='flat',edgecolors='none',cmap=plt.cm.jet)
  #map.contourf(x,y,var,10,tri=True,shading='flat',edgecolors='none',cmap=plt.cm.jet)
  plt.colorbar()
  
  if(1):
    map = Basemap(projection='ortho',lon_0=100,lat_0=-60, resolution='l')
    x,y = map(lon, lat)

    fig2 = plt.figure(2)
    map.drawcoastlines()
    map.drawmapboundary()
    map.pcolor(x,y,var,tri=True,shading='flat',edgecolors='none',cmap=plt.cm.jet) #cmap=plt.cm.hot_r) #,vmin=100,vmax=1000)
    #map.contour(x,y,var,10,tri=True,shading='flat',edgecolors='none',cmap=plt.cm.jet)
    #map.contourf(x,y,var,10,tri=True,shading='flat',edgecolors='none',cmap=plt.cm.jet)
    plt.colorbar()
  
  #plotName = '/home/nickszap/Desktop/sst'+str(time)+'.png'
  #fig1.savefig(plotName)
  
  plt.show()
开发者ID:nickszap,项目名称:mpas-tools,代码行数:48,代码来源:plotPython.py

示例14: plot_hrrr_sgp

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def plot_hrrr_sgp(filename,parameter,directory = os.getcwd(),hinp = '', scaling = 1, final_unit = '', margin = 10, vmax = None, vmin = None):

    """
    Plots an hrrr file focused on the SGP site for a given hrrr filename, parameter and height in hPa. 
    Labels the SGP site.  
     
    Leaving the height blank will cause it to plot the maximum values of the file.  The margin defines half the length of 
    the plot area in degrees latitude and longitude.  Scaling and final_unit can be used to tweak the data in order to 
    make it more visible on the graph.  vmax and vmin function the same as in pcolormesh from Basemap.  
    """
    wkdir = os.getcwd()
    os.chdir(directory)
    
    if hinp != '':
        [data,parameterlist,units] = read_hrrr(filename,[parameter])
    else:
        [data,parameterlist,units] = read_hrrr(filename,[parameter],directory = directory,max=True)
        
    if hinp !='':
        datah = HRRR_PS.tolist()
        hindex = datah.index(hinp)
        
    if final_unit == '':
        final_unit = units[0]
        

    f = plt.figure(figsize=[12,10])
    m = Basemap(llcrnrlon = -97.485-margin,llcrnrlat = 36.605-margin, urcrnrlon = -97.485+margin,
                   urcrnrlat = 36.605+margin, projection = 'mill', area_thresh =10000 ,
                   resolution='l')
        
    latlonsgp = [-97.485,36.605]
    cities = ['Lamont,OK']
    sgpx,sgpy = m(latlonsgp[0],latlonsgp[1])
    m.plot(sgpx,sgpy,'bo')
    #plt.text(sgpx+50000,sgpy+50000,'SGP site')
        
    x, y = m(HRRR_DATALOC[1],HRRR_DATALOC[0])
    data = np.array(data)
    
    
    if hinp != '':
        newdata = data[0][hindex][:][:]
    else:
        newdata = data[0]
        
    my_mesh = m.pcolor(x, y, newdata, vmax = .05, norm = colors.LogNorm())
#    my_coast = m.drawcoastlines(linewidth=1.25)
#    my_states = m.drawstates()
#    my_p = m.drawparallels(np.arange(20,80,4),labels=[1,1,0,0])
#    my_m = m.drawmeridians(np.arange(-140,-60,4),labels=[0,0,0,1])
        
    plt.colorbar(label=parameter+' '+final_unit)
    plt.show()
    
    os.chdir(wkdir)
    return
开发者ID:EVS-ATMOS,项目名称:HRRR,代码行数:59,代码来源:plot_hrrr_sgp.py

示例15: plot_nc

# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import pcolor [as 别名]
def plot_nc(lons, lats, precips):
    m = Basemap(width=200000, height=200000, projection='stere',
                lat_0=lat_0, lon_0=lon_0)
    lon, lat = np.meshgrid(lons, lats)
    xi, yi = m(lon, lat)
    cs = m.pcolor(xi, yi, precips[0])
    m.drawstates()
    m.drawcounties()
    cbar = m.colorbar(cs, location='bottom', pad='10%')
    plt.show()
开发者ID:uva-hydroinformatics-lab,项目名称:FloodWarningModelProject,代码行数:12,代码来源:plot_nc.py


注:本文中的mpl_toolkits.basemap.Basemap.pcolor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。