本文整理汇总了Python中mpl_toolkits.basemap.Basemap.barbs方法的典型用法代码示例。如果您正苦于以下问题:Python Basemap.barbs方法的具体用法?Python Basemap.barbs怎么用?Python Basemap.barbs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mpl_toolkits.basemap.Basemap
的用法示例。
在下文中一共展示了Basemap.barbs方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_plot_all_map_vels
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
def test_plot_all_map_vels():
def gen_tracks():
for fn in glob('tracks/*.json'):
with open(fn, 'rb') as fp:
try:
yield RKJSON(fp)
except BadInputException:
pass
tracks = list(gen_tracks())
print "Considering {} tracks".format(len(tracks))
lllat, urlat, lllon, urlon = Grid.calculate_bounds(tracks)
m = Basemap(projection='cyl',
llcrnrlon=lllon, llcrnrlat=lllat,
urcrnrlon=urlon, urcrnrlat=urlat,
resolution='h')
m.drawcoastlines()
for t in tracks:
vels = t.calculate_vels()
x, y = m(vels.lon, vels.lat)
m.barbs(x, y, vels.u, vels.v)
plt.annotate("Docklands", (144.948, -37.815))
plt.annotate("Brunswick", (144.960, -37.767))
plt.annotate("Brunswick East", (144.979, -37.769))
plt.annotate("Richmond", (144.999, -37.819))
plt.annotate("Fitzroy", (144.978, -37.800))
plt.show()
示例2: test_plot_map_vels
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
def test_plot_map_vels(xml):
track = GPX(xml)
vels = track.calculate_vels(smooth_vels=True)
lllat, lllon = min(track.lat) - 0.01, min(track.lon) - 0.01
urlat, urlon = max(track.lat) + 0.01, max(track.lon) + 0.01
# find the centre point
lat_0 = (urlat - lllat) / 2 + lllat
lon_0 = (urlon - lllon) / 2 + lllon
# FIXME: rsphere required because my Proj is screwy
m = Basemap(projection='cyl',
llcrnrlon=lllon, llcrnrlat=lllat,
urcrnrlon=urlon, urcrnrlat=urlat,
lat_0=lat_0, lon_0=lon_0,
resolution='h')
# rsphere=(6378137.00, 6356752.3142))
x, y = m(vels.lon, vels.lat)
m.drawcoastlines()
m.drawrivers()
m.barbs(x, y, vels.u, vels.v) #, vels.anom, cmap=plt.get_cmap('RdBu_r'))
plt.show()
示例3: test_plot_map_vels
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
def test_plot_map_vels(json):
track = RKJSON(json)
vels = track.calculate_vels()
lllat, lllon = min(track.lat) - 0.01, min(track.lon) - 0.01
urlat, urlon = max(track.lat) + 0.01, max(track.lon) + 0.01
print vels.bearing
# find the centre point
lat_0 = (urlat - lllat) / 2 + lllat
lon_0 = (urlon - lllon) / 2 + lllon
# FIXME: rsphere required because my Proj is screwy
m = Basemap(projection='cyl',
llcrnrlon=lllon, llcrnrlat=lllat,
urcrnrlon=urlon, urcrnrlat=urlat,
lat_0=lat_0, lon_0=lon_0,
resolution='h')
x, y = m(vels.lon, vels.lat)
plt.annotate("Start", (x[0], y[0]))
m.barbs(x, y, vels.u, vels.v) #, vels.anom, cmap=plt.get_cmap('RdBu_r'))
plt.show()
示例4: plot_gini_grid_barbs
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
def plot_gini_grid_barbs(gini_grid, box = [-110, -70, 20, 52], resolution = 'l',
parallels = None,
meridians = None,
vmin = None, vmax = None,
fld = 'IR', title = None,
degrade = 5, u='u', v='v'):
m = Basemap(llcrnrlon = box[0] ,llcrnrlat = box[2] , urcrnrlon = box[1],
urcrnrlat = box[3] , projection = 'mill', area_thresh =1000 ,
resolution = resolution)
x, y = m(gini_grid.fields['lon']['data'], gini_grid.fields['lat']['data'])
# create figure.
if parallels == None:
parallels = np.linspace(10,50, 9)
if meridians == None:
meridians = np.linspace(-110, -80,7)
m.drawparallels(parallels, labels=[1,1,0,0])
m.drawmeridians(meridians,labels=[0,0,0,1])
pc = m.pcolormesh(x, y , gini_grid.fields[fld]['data'][0,:], cmap=plt.get_cmap('gray'),
vmin = vmin, vmax = vmax)
qq = m.barbs(x[::degrade,::degrade], y[::degrade,::degrade],
gini_grid.fields[u]['data'][0,::degrade,::degrade],
gini_grid.fields[v]['data'][0,::degrade,::degrade])
plt.title(title)
m.drawcoastlines(linewidth=1.25)
m.drawstates()
plt.colorbar(mappable=pc, label = 'Counts')
示例5: sfc_plot
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
def sfc_plot(starttime, endtime, variables, variablest, locations,
met, xi, yi, xmin, xmax, ymin, ymax):
''' Script for plotting the mesonet data with wind barbs over a
county map in a given time interval
'''
interval = int((endtime - starttime).total_seconds()/300)
z_max = np.max(met[variablest[1]])
z_min = np.min(met[variablest[1]])
levels = np.arange(z_min, z_max+0.1, 0.1)
shapefile = 'UScounties/UScounties'
if not os.path.exists('%s' %(variables)):
os.makedirs('%s' %(variables))
for i in range(interval):
time_selection = starttime + dt.timedelta(minutes=5*i)
zi = interpolate.griddata((met.ix[time_selection]['Lon'],
met.ix[time_selection]['Lat']),
met.ix[time_selection][variablest[1]],
(xi, yi), method='linear')
maps = Basemap(llcrnrlon=xmin, llcrnrlat=ymin,
urcrnrlon=xmax, urcrnrlat=ymax, projection='cyl')
maps.readshapefile(shapefile, name='counties')
if (variables == 'dew_point'):
maps.contourf(xi, yi, zi, levels, cmap=plt.cm.gist_earth_r)
if (variables == 'temperature'):
maps.contourf(xi, yi, zi, levels, cmap=plt.cm.jet)
if variables == 'rainfall':
maps.contourf(xi, yi, zi, levels, cmap=plt.cm.YlGn)
if ((variables == 'pressure') or (variables == 'wind_speed') or
(variables == 'gust_speed')):
maps.contourf(xi, yi, zi, levels, cmap=plt.cm.gist_earth)
c = plt.colorbar()
c.set_label(variablest[0])
maps.scatter(met.ix[time_selection]['Lon'],
met.ix[time_selection]['Lat'], marker='o', c='b', s=5)
maps.barbs(met.ix[time_selection]['Lon'],
met.ix[time_selection]['Lat'],
met.ix[time_selection]['u'].values,
met.ix[time_selection]['v'].values)
plt.title(variablest[1])
filename = '%s_%s.png' % (variables,
time_selection.strftime('%Y%m%d_%H%M'))
plt.tight_layout()
plt.savefig(variables + '/' + filename, dpi=150)
plt.clf()
示例6: CO2nWind
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
def CO2nWind(file,outputdir):
"""
Outputs plots of CO2 in the lowest level and 10m winds
"""
import matplotlib
matplotlib.use('Agg')
import numpy as np
import sys
from netCDF4 import Dataset
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
# read in file and vars
f = Dataset(file,'r')
wrfeta = f.variables['ZNU'][0][:]
times = f.variables['Times'][:]
wrflats = f.variables['XLAT'][0][:]
wrflons = f.variables['XLONG'][0][:]
var = f.variables['CO2_ANT'][:,0,:,:]
u = f.variables['U'][:,0,:,:]
v = f.variables['V'][:,0,:,:]
# destagger u/v
u = (u[:,:,:-1] + u[:,:,1:])/2.
v = (v[:,:-1,:] + v[:,1:,:])/2.
# four corners of domain
wrflat_s = wrflats[0,len(wrflats)-1]
wrflat_n = wrflats[len(wrflats)-1,len(wrflons[0])-1]
wrflon_w = wrflons[0,0]
wrflon_e = wrflons[len(wrflats)-1,len(wrflons[0])-1]
z = 0 # assuming lowest level of model
# set up map
map = Basemap(projection='merc',llcrnrlon=wrflon_w,urcrnrlon=wrflon_e,llcrnrlat=wrflat_s,urcrnrlat=wrflat_n,resolution='i')
map.drawstates()
map.drawcounties()
map.drawcoastlines()
x,y = map(wrflons,wrflats)
# loop through times
for t in range(len(times)):
timestr = ''.join(times[t,:])
map.drawstates(color='gray',linewidth=1)
map.drawcounties(color='white')
map.drawcoastlines(color='gray',linewidth=1)
plt1 = map.pcolormesh(x,y,var[t,:,:],vmin=380,vmax=450)
#plt1 = map.pcolormesh(x,y,var[t,:,:],vmin=np.amin(var),vmax=np.amax(var))
winds = map.barbs(x[::20,::20],y[::20,::20],u[t,::20,::20]*1.94,v[t,::20,::20]*1.94,length=6,color='white') # *1.94 to convert m/s to knots (barb convention)
colorbar = map.colorbar(plt1,"right", size="5%",pad="2%")
colorbar.set_label(f.variables['CO2_ANT'].description+' '+f.variables['CO2_ANT'].units)
plt.title('WRF output valid: '+timestr)
plt.savefig(outputdir+'/%03d_' % (t) +timestr+'_CO2_wind.png')
plt.clf()
示例7: plot_gridded_ensemble
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
def plot_gridded_ensemble(gfsx, contour_units=None, max_level=None,
barb_units='knot', cols=2, save_path=None, save_fmt='svg'):
"""
Plots the average windspeed deviation of ensemble forecast members over
the published GSF forecast for each grid point and forecast time.
The result is (for each forecast time) a color filled contour plot
indicating the ensemble deviation superimposed over the usual wind barbs
with the published GFS forecast vectors.
Parameters:
-----------
fcst_gfsx: xray.Dataset
Dataset with the GFS forecast for windspeed (uwnd and vwnd) and
ensemble forecast deviation (other forecast variables will be ignored
if present).
contour_units: str
The units in which to plot the ensemble spread indicator (heatmap). If
specified, the data sets current unit must be convertible into the
desired unit by slocum.lib.units. If not specified the exsiting units in
the data set will be used.
max_level: float
Heatmap/contour plot maximum level. Minimum level is assumed to be 0.
Values greater tha max_level will be mapped onto the max_level color.
If not specified, the maximum value found in the data set will be used
as the upper end of the color bar.
barb_units: str
Units in which to plot the GFS wind speed/direction forecast data (wind
bars). If specified, the data sets current unit must be convertible
into the desired unit by slocum.lib.units.
cols: int
Number of columns for subplot layout.
save_path: str
If specified the plot will be saved into this directory with file
name ``ens_<bounding box>_<t0>.svg`` where *bounding box* is
specified as *ll_lat, ll_lon - ur_lat, ur_lon*. If not specified or
``None`` the plot will be displayed interactively.
save_fmt: str
Format under which to save the image (only relevant if *save_path* is
specified). Can be any image file extension that plt.savefig() will
recognize as a valid format.
"""
# adjust units as requested:
for v in (conv.UWND, conv.VWND):
units.convert_units(gfsx[v], barb_units)
if contour_units:
units.convert_units(gfsx[conv.ENS_SPREAD_WS], contour_units)
if not max_level:
max_level = gfsx[conv.ENS_SPREAD_WS].max()
if isinstance(gfsx, np.datetime64): # True is gfsx has not been packed
f_times = gfsx[conv.TIME].values
else: # time variable has int offsets
f_times = xray.conventions.decode_cf_datetime(
gfsx['time'], gfsx['time'].attrs['units'])
lats = gfsx[conv.LAT].values
lons = gfsx[conv.LON].values
# Basemap.transform_vector requires lats and lons each to be in ascending
# order:
lat_inds = range(len(lats))
lon_inds = range(len(lons))
if NautAngle(lats[0]).is_north_of(NautAngle(lats[-1])):
lat_inds.reverse()
lats = lats[lat_inds]
if NautAngle(lons[0]).is_east_of(NautAngle(lons[-1])):
lon_inds.reverse()
lons = lons[lon_inds]
# determine layout:
fig_width_inches = 10
plot_aspect_ratio = (abs(lons[-1] - lons[0]) /
float(abs(lats[-1] - lats[0])))
rows = int(np.ceil(gfsx.dimensions[conv.TIME] / float(cols)))
fig_height_inches = (fig_width_inches / (float(cols) * plot_aspect_ratio)
* rows + 2)
fig = plt.figure(figsize=(fig_width_inches, fig_height_inches))
fig.suptitle("GFS wind forecast in %s and "
"ensemble wind speed deviation" % barb_units,
fontsize=12)
grid = AxesGrid(fig, [0.01, 0.01, 0.95, 0.93],
nrows_ncols=(rows, cols),
axes_pad=0.8,
cbar_mode='single',
cbar_pad=0.0,
cbar_size=0.2,
cbar_location='bottom',
share_all=True,)
# size for lat/lon labels, timestamp:
label_fontsize = 'medium' if cols <= 2 else 'small'
# format string for colorbar labels:
decimals = max(0, int(2 - np.floor(np.log10(max_level))))
cb_label_fmt = '%.' + '%d' % decimals + 'f'
# heatmap color scaling and levels
spread_levels = np.linspace(0., max_level, 50)
m = Basemap(projection='merc', llcrnrlon=lons[0], llcrnrlat=lats[0],
urcrnrlon=lons[-1], urcrnrlat=lats[-1], resolution='l')
#.........这里部分代码省略.........
示例8:
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
lons, lats = np.meshgrid(lons, lats)
v10 = np.ones((lons.shape)) * 15
u10 = np.zeros((lons.shape))
u10_rot, v10_rot, x, y = map.rotate_vector(u10, v10, lons, lats, returnxy=True)
ax = fig.add_subplot(121)
ax.set_title('Without rotation')
map.drawmapboundary(fill_color='aqua')
map.fillcontinents(color='#cc9955', lake_color='aqua', zorder = 0)
map.drawcoastlines(color = '0.15')
map.barbs(x, y, u10, v10,
pivot='middle', barbcolor='#333333')
ax = fig.add_subplot(122)
ax.set_title('Rotated vectors')
map.drawmapboundary(fill_color='9999FF')
map.fillcontinents(color='#ddaa66', lake_color='9999FF', zorder = 0)
map.drawcoastlines(color = '0.15')
map.barbs(x, y, u10_rot, v10_rot,
pivot='middle', barbcolor='#ff7777')
plt.show()
示例9: m
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
norm = mpl.colors.Normalize(vmin=-35, vmax=80)
ax.text(0.5, .97, title, transform=plt.gca().transAxes,fontsize=16, horizontalalignment='center', bbox=dict(facecolor='white', alpha=0.9, boxstyle='round'))
#cax = m.pcolormesh(x, y, data, cmap=cmap, norm=norm)
cax = m.imshow(data, extent = (x.min(), x.max(), y.min(), y.max()), cmap=cmap, norm=norm, origin="upper")
m.drawcoastlines(color='#FFFFFF')
m.drawstates(color='#FFFFFF')
m.drawcountries(color='#FFFFFF')
m.drawcounties(color='#FFFFFF', linewidth=0.09)
cbar = m.colorbar(cax)
x_grid, y_grid = m(cape_grid_lon, cape_grid_lat)
c = m.contour(x_grid, y_grid, CAPE, np.arange(500,6500,500), cmap='spring_r')
plt.clabel(c, fmt='%4.0f')
stride = 10
#m.barbs(x_grid[::stride, ::stride], y_grid[::stride, ::stride], u_shear[::stride,::stride], v_shear[::stride,::stride], mag[::stride,::stride], cmap='RdPu')
m.barbs(grid_lon, grid_lat, u_shear.T, v_shear.T, mag.T, clim=[30,70], latlon=True, cmap='RdPu')
plt.tight_layout()
# Make the newest graphic.
out_filename = path_to_imgs + 'nexrad_rap_composite_' + today.strftime("%Y%m%d_%H%M.png")
plt.savefig(out_filename, bbox_inches='tight')
# Delete the oldest graphic.
old_filename = path_to_imgs + 'nexrad_rap_composite_' + end.strftime("%Y%m%d_%H%M.png")
os.system('/usr/bin/rm ' + old_filename)
print "Making looper"
path_to_looper = '/data/soundings/blumberg/programs/wx_maps/looper/make_looper.py'
os.system('/data/soundings/anaconda/bin/python ' + path_to_looper + ' ' + path_to_imgs + ' nexrad_rap')
示例10:
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
qk = plt.quiverkey(Q, 0.1, 0.1, 20, '20 m/s', labelpos='W')
# draw coastlines, parallels, meridians.
m.drawcoastlines(linewidth=1.5)
m.drawparallels(parallels)
m.drawmeridians(meridians)
# add colorbar
cb = m.colorbar(CS2,"bottom", size="5%", pad="2%")
cb.set_label('hPa')
# set plot title
ax.set_title('SLP and Wind Vectors '+str(date))
fig1.savefig('plotwindvec1.png')
# create 2nd figure, add axes
fig2 = plt.figure(figsize=(8,10))
ax = fig2.add_axes([0.1,0.1,0.8,0.8])
# plot SLP contours
CS1 = m.contour(x,y,slp,clevs,linewidths=0.5,colors='k',animated=True)
CS2 = m.contourf(x,y,slp,clevs,cmap=plt.cm.RdBu_r,animated=True)
# plot wind barbs over map.
barbs = m.barbs(xx,yy,uproj,vproj,length=5,barbcolor='k',flagcolor='r',linewidth=0.5)
# draw coastlines, parallels, meridians.
m.drawcoastlines(linewidth=1.5)
m.drawparallels(parallels)
m.drawmeridians(meridians)
# add colorbar
cb = m.colorbar(CS2,"bottom", size="5%", pad="2%")
cb.set_label('hPa')
# set plot title.
ax.set_title('SLP and Wind Barbs '+str(date))
fig2.savefig('plotwindvec2.png')
示例11: map
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
lat_0=0, lon_0=0)
lons = np.linspace(-180, 180, 8)
lats = np.linspace(-90, 90, 8)
v10 = np.ones((lons.shape)) * 15
u10 = np.zeros((lons.shape))
u10, v10 = np.meshgrid(u10, v10)
u10_rot, v10_rot, x_rot, y_rot = map.transform_vector(u10, v10,
lons, lats,
15, 15,
returnxy=True)
map.drawmapboundary(fill_color='#9999FF')
map.fillcontinents(color='#ddaa66', lake_color='#9999FF', zorder = 0)
map.drawcoastlines(color = '0.15')
#Drawing the original points
lons, lats = np.meshgrid(lons, lats)
x, y = map(lons, lats)
map.barbs(x, y, u10, v10,
pivot='middle', barbcolor='#333333')
#Drawing the rotated & interpolated points
map.barbs(x_rot, y_rot, u10_rot, v10_rot,
pivot='middle', barbcolor='#ff5555')
plt.show()
示例12: Basemap
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
from osgeo import gdal
import numpy as np
map = Basemap(llcrnrlon=-93.7, llcrnrlat=28., urcrnrlon=-66.1, urcrnrlat=39.5,
projection='lcc', lat_1=30., lat_2=60., lat_0=34.83158, lon_0=-98.)
ds = gdal.Open("../sample_files/wrf.tiff")
lons = ds.GetRasterBand(4).ReadAsArray()
lats = ds.GetRasterBand(5).ReadAsArray()
u10 = ds.GetRasterBand(1).ReadAsArray()
v10 = ds.GetRasterBand(2).ReadAsArray()
x, y = map(lons, lats)
yy = np.arange(0, y.shape[0], 4)
xx = np.arange(0, x.shape[1], 4)
points = np.meshgrid(yy, xx)
map.drawmapboundary(fill_color='aqua')
map.fillcontinents(color='#cc9955', lake_color='aqua', zorder = 0)
map.drawcoastlines(color = '0.15')
map.barbs(x[points], y[points], u10[points], v10[points],
pivot='middle', barbcolor='#333333')
plt.show()
示例13: m
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
lon = np.squeeze(file.variables['XLONG'][:,:]);
lat = np.squeeze(file.variables['XLAT'][:,:]);
U,V = np.multiply(U,1.94384449),np.multiply(V,1.94384449);
XA,YA = m(lon,lat);
os.chdir('/home/disk/manta14/awsmith/umcm/umcm_runs/katrina_awo_gfs10/output/')
file = Dataset('umwmout_2005-08-29_12:00:00.nc','r');
SWH = np.squeeze(file.variables['swh'][:,:]);
lonw = np.squeeze(file.variables['lon'][:,:]);
latw = np.squeeze(file.variables['lat'][:,:]);
XW,YW = m(lonw,latw);
m.contourf(XW,YW,SWH,np.arange(0,31,1),cmap='jet')
m.barbs(XA[0:-1:8,0:-1:8],YA[0:-1:8,0:-1:8],U[0:-1:8,0:-1:8],V[0:-1:8,0:-1:8],barbcolor='k',flagcolor='r',linewidth=0.5)
plt.title('Hurricane Katrina (2005) SWH (m) & Surface Winds (kt), August 29 1200 UTC',fontsize=8)
## Add land mask over
m.fillcontinents(color='w')
m.drawcountries()
m.drawstates()
## Add ocean mask over
plt.figure(num=5,figsize=(6,6))
m = Basemap(llcrnrlon=-95.,llcrnrlat=20.,urcrnrlon=-80.,urcrnrlat=35.,projection='lcc',lat_1=20.,lat_2=40.,lon_0=-60.,resolution ='l',area_thresh=1000.)
m.drawcoastlines()
m.drawcountries()
m.drawparallels(np.arange(20,36,2),labels=[1,0,0,0])
m.drawmeridians(np.arange(-95,-78,2),labels=[0,0,0,1])
import mpl_toolkits.basemap
REFD_OM = mpl_toolkits.basemap.maskoceans(lon,lat,REFD,'True','l');
示例14: Basemap
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
map = Basemap(llcrnrlon=-82., llcrnrlat=28., urcrnrlon=-79., urcrnrlat=29.5,
projection='lcc', lat_1=30., lat_2=60., lat_0=34.83158, lon_0=-98.,
resolution='i')
ds = gdal.Open("../sample_files/wrf.tiff")
lons = ds.GetRasterBand(4).ReadAsArray()
lats = ds.GetRasterBand(5).ReadAsArray()
u10 = ds.GetRasterBand(1).ReadAsArray()
v10 = ds.GetRasterBand(2).ReadAsArray()
x, y = map(lons, lats)
x2 = np.linspace(x[0][0],x[0][-1],x.shape[1]*2)
y2 = np.linspace(y[0][0],y[-1][0],y.shape[0]*2)
x2, y2 = np.meshgrid(x2, y2)
u10_2 = interp(u10, x[0], np.flipud(y[:, 0]), x2, np.flipud(y2),order=1)
v10_2 = interp(v10, x[0], np.flipud(y[:, 0]), x2, np.flipud(y2),order=1)
map.drawmapboundary(fill_color='#9999FF')
map.fillcontinents(color='#cc9955', lake_color='#9999FF', zorder = 0)
map.drawcoastlines(color = '0.15')
map.barbs(x, y, u10, v10,
pivot='middle', barbcolor='#555555')
map.barbs(x2, y2, u10_2, v10_2,
pivot='middle', barbcolor='#FF3333')
plt.show()
示例15: m
# 需要导入模块: from mpl_toolkits.basemap import Basemap [as 别名]
# 或者: from mpl_toolkits.basemap.Basemap import barbs [as 别名]
llcrnrlon=bot_left_lon,llcrnrlat=bot_left_lat,\
urcrnrlon=top_right_lon,urcrnrlat=top_right_lat,)
plt.figure(figsize=[16*1.5,10*1.5])
m.drawcoastlines()
m.drawcountries()
m.drawstates()
x,y = m(lon,lat)
# Now plot wind and geopotential height
m.pcolormesh(x,y,speed,cmap="gist_stern_r")
cb = plt.colorbar(shrink=.7)
cb.set_label("Wind Speed (m/s)")
interval = 50
m.barbs(x[::50,::50],y[::50,::50],U[::50,::50],V[::50,::50])
# Just becuase we can, add 500 mb Geopotential Height Contours on top.
CS = m.contour(x,y,Z,colors='black',levels=np.arange(0,6000,60),linewidths=3)
plt.clabel(CS, inline=1, fontsize=12,fmt='%1.0f')
validDate = grb.validDate
plt.title('HRRR Analysis Valid '+validDate.strftime('%Y-%b-%d %H:%M:%S')+'\n'+
str(grb.level)+' mb '+Zname+'and Wind')
plt.savefig('HRRR_anl_'+str(mb)+'.png',dpi=300,bbox_inches='tight')
plt.show()