当前位置: 首页>>代码示例>>Python>>正文


Python GeneralizationAcrossTime.predict方法代码示例

本文整理汇总了Python中mne.decoding.GeneralizationAcrossTime.predict方法的典型用法代码示例。如果您正苦于以下问题:Python GeneralizationAcrossTime.predict方法的具体用法?Python GeneralizationAcrossTime.predict怎么用?Python GeneralizationAcrossTime.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.decoding.GeneralizationAcrossTime的用法示例。


在下文中一共展示了GeneralizationAcrossTime.predict方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_circular_classifiers

# 需要导入模块: from mne.decoding import GeneralizationAcrossTime [as 别名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 别名]
def test_circular_classifiers():
    from mne.decoding import GeneralizationAcrossTime
    from ..scorers import scorer_angle
    from sklearn.linear_model import Ridge, RidgeCV
    epochs, angles = make_circular_data()
    clf_list = [PolarRegression, AngularRegression,
                SVR_polar, SVR_angle]  # XXX will be deprecated
    for clf_init in clf_list:
        for independent in [False, True]:
            if clf_init in [SVR_polar, SVR_angle]:
                if (not independent):
                    continue
                clf = clf_init(clf=Ridge(random_state=0))
            else:
                clf = clf_init(clf=Ridge(random_state=0),
                               independent=independent)
            print clf_init, independent
            gat = GeneralizationAcrossTime(clf=clf, scorer=scorer_angle)
            gat.fit(epochs, y=angles)
            gat.predict(epochs)
            gat.score(y=angles)
            assert_true(np.abs(gat.scores_[0][0]) < .5)  # chance level
            assert_true(gat.scores_[1][1] > 1.)  # decode
            assert_true(gat.scores_[2][2] > 1.)  # decode
            assert_true(gat.scores_[1][2] < -1.)  # anti-generalize
    # Test args
    gat = GeneralizationAcrossTime(clf=RidgeCV(alphas=[1., 2.]),
                                   scorer=scorer_angle)
    gat.fit(epochs, y=angles)
    gat = GeneralizationAcrossTime(clf=RidgeCV(), scorer=scorer_angle)
    gat.fit(epochs, y=angles)
开发者ID:LauraGwilliams,项目名称:jr-tools,代码行数:33,代码来源:test_clf.py

示例2: test_generalization_across_time

# 需要导入模块: from mne.decoding import GeneralizationAcrossTime [as 别名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 别名]
def test_generalization_across_time():
    """Test time generalization decoding
    """
    from sklearn.svm import SVC
    from sklearn.base import is_classifier
    # KernelRidge is used for testing 1) regression analyses 2) n-dimensional
    # predictions.
    from sklearn.kernel_ridge import KernelRidge
    from sklearn.preprocessing import LabelEncoder
    from sklearn.metrics import roc_auc_score, mean_squared_error

    epochs = make_epochs()
    y_4classes = np.hstack((epochs.events[:7, 2], epochs.events[7:, 2] + 1))
    if check_version('sklearn', '0.18'):
        from sklearn.model_selection import (KFold, StratifiedKFold,
                                             ShuffleSplit, LeaveOneLabelOut)
        cv_shuffle = ShuffleSplit()
        cv = LeaveOneLabelOut()
        # XXX we cannot pass any other parameters than X and y to cv.split
        # so we have to build it before hand
        cv_lolo = [(train, test) for train, test in cv.split(
                   X=y_4classes, y=y_4classes, labels=y_4classes)]

        # With sklearn >= 0.17, `clf` can be identified as a regressor, and
        # the scoring metrics can therefore be automatically assigned.
        scorer_regress = None
    else:
        from sklearn.cross_validation import (KFold, StratifiedKFold,
                                              ShuffleSplit, LeaveOneLabelOut)
        cv_shuffle = ShuffleSplit(len(epochs))
        cv_lolo = LeaveOneLabelOut(y_4classes)

        # With sklearn < 0.17, `clf` cannot be identified as a regressor, and
        # therefore the scoring metrics cannot be automatically assigned.
        scorer_regress = mean_squared_error
    # Test default running
    gat = GeneralizationAcrossTime(picks='foo')
    assert_equal("<GAT | no fit, no prediction, no score>", "%s" % gat)
    assert_raises(ValueError, gat.fit, epochs)
    with warnings.catch_warnings(record=True):
        # check classic fit + check manual picks
        gat.picks = [0]
        gat.fit(epochs)
        # check optional y as array
        gat.picks = None
        gat.fit(epochs, y=epochs.events[:, 2])
        # check optional y as list
        gat.fit(epochs, y=epochs.events[:, 2].tolist())
    assert_equal(len(gat.picks_), len(gat.ch_names), 1)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), no "
                 "prediction, no score>", '%s' % gat)
    assert_equal(gat.ch_names, epochs.ch_names)
    # test different predict function:
    gat = GeneralizationAcrossTime(predict_method='decision_function')
    gat.fit(epochs)
    # With classifier, the default cv is StratifiedKFold
    assert_true(gat.cv_.__class__ == StratifiedKFold)
    gat.predict(epochs)
    assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 1))
    gat.predict_method = 'predict_proba'
    gat.predict(epochs)
    assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 2))
    gat.predict_method = 'foo'
    assert_raises(NotImplementedError, gat.predict, epochs)
    gat.predict_method = 'predict'
    gat.predict(epochs)
    assert_array_equal(np.shape(gat.y_pred_), (15, 15, 14, 1))
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predicted 14 epochs, no score>",
                 "%s" % gat)
    gat.score(epochs)
    assert_true(gat.scorer_.__name__ == 'accuracy_score')
    # check clf / predict_method combinations for which the scoring metrics
    # cannot be inferred.
    gat.scorer = None
    gat.predict_method = 'decision_function'
    assert_raises(ValueError, gat.score, epochs)
    # Check specifying y manually
    gat.predict_method = 'predict'
    gat.score(epochs, y=epochs.events[:, 2])
    gat.score(epochs, y=epochs.events[:, 2].tolist())
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predicted 14 epochs,\n scored "
                 "(accuracy_score)>", "%s" % gat)
    with warnings.catch_warnings(record=True):
        gat.fit(epochs, y=epochs.events[:, 2])

    old_mode = gat.predict_mode
    gat.predict_mode = 'super-foo-mode'
    assert_raises(ValueError, gat.predict, epochs)
    gat.predict_mode = old_mode

    gat.score(epochs, y=epochs.events[:, 2])
    assert_true("accuracy_score" in '%s' % gat.scorer_)
    epochs2 = epochs.copy()

    # check _DecodingTime class
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.050 (s), length: 0.050 (s), n_time_windows: 15>",
                 "%s" % gat.train_times_)
#.........这里部分代码省略.........
开发者ID:jmontoyam,项目名称:mne-python,代码行数:103,代码来源:test_time_gen.py

示例3: test_generalization_across_time

# 需要导入模块: from mne.decoding import GeneralizationAcrossTime [as 别名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 别名]
def test_generalization_across_time():
    """Test time generalization decoding
    """
    from sklearn.svm import SVC
    from sklearn.preprocessing import LabelEncoder
    from sklearn.metrics import mean_squared_error

    raw = io.Raw(raw_fname, preload=False)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg='mag', stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[0:2]
    decim = 30

    # Test on time generalization within one condition
    with warnings.catch_warnings(record=True):
        epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                        baseline=(None, 0), preload=True, decim=decim)
    # Test default running
    gat = GeneralizationAcrossTime()
    assert_equal("<GAT | no fit, no prediction, no score>", "%s" % gat)
    assert_raises(ValueError, gat.fit, epochs, picks='foo')
    with warnings.catch_warnings(record=True):
        # check classic fit + check manual picks
        gat.fit(epochs, picks=[0])
        # check optional y as array
        gat.fit(epochs, y=epochs.events[:, 2])
        # check optional y as list
        gat.fit(epochs, y=epochs.events[:, 2].tolist())
    assert_equal(len(gat.picks_), len(gat.ch_names), 1)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), no "
                 "prediction, no score>", '%s' % gat)
    assert_equal(gat.ch_names, epochs.ch_names)
    gat.predict(epochs)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predicted 14 epochs, no score>",
                 "%s" % gat)
    gat.score(epochs)
    gat.score(epochs, y=epochs.events[:, 2])
    gat.score(epochs, y=epochs.events[:, 2].tolist())
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predicted 14 epochs,\n scored "
                 "(accuracy_score)>", "%s" % gat)
    with warnings.catch_warnings(record=True):
        gat.fit(epochs, y=epochs.events[:, 2])

    old_mode = gat.predict_mode
    gat.predict_mode = 'super-foo-mode'
    assert_raises(ValueError, gat.predict, epochs)
    gat.predict_mode = old_mode

    gat.score(epochs, y=epochs.events[:, 2])
    assert_true("accuracy_score" in '%s' % gat.scorer_)
    epochs2 = epochs.copy()

    # check _DecodingTime class
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.047 (s), length: 0.047 (s), n_time_windows: 15>",
                 "%s" % gat.train_times)
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.047 (s), length: 0.047 (s), n_time_windows: 15 x 15>",
                 "%s" % gat.test_times_)

    # the y-check
    gat.predict_mode = 'mean-prediction'
    epochs2.events[:, 2] += 10
    gat_ = copy.deepcopy(gat)
    assert_raises(ValueError, gat_.score, epochs2)
    gat.predict_mode = 'cross-validation'

    # Test basics
    # --- number of trials
    assert_true(gat.y_train_.shape[0] ==
                gat.y_true_.shape[0] ==
                len(gat.y_pred_[0][0]) == 14)
    # ---  number of folds
    assert_true(np.shape(gat.estimators_)[1] == gat.cv)
    # ---  length training size
    assert_true(len(gat.train_times['slices']) == 15 ==
                np.shape(gat.estimators_)[0])
    # ---  length testing sizes
    assert_true(len(gat.test_times_['slices']) == 15 ==
                np.shape(gat.scores_)[0])
    assert_true(len(gat.test_times_['slices'][0]) == 15 ==
                np.shape(gat.scores_)[1])

    # Test longer time window
    gat = GeneralizationAcrossTime(train_times={'length': .100})
    with warnings.catch_warnings(record=True):
        gat2 = gat.fit(epochs)
    assert_true(gat is gat2)  # return self
    assert_true(hasattr(gat2, 'cv_'))
    assert_true(gat2.cv_ != gat.cv)
    scores = gat.score(epochs)
    assert_true(isinstance(scores, list))  # type check
    assert_equal(len(scores[0]), len(scores))  # shape check

    assert_equal(len(gat.test_times_['slices'][0][0]), 2)
    # Decim training steps
    gat = GeneralizationAcrossTime(train_times={'step': .100})
#.........这里部分代码省略.........
开发者ID:XristosK,项目名称:mne-python,代码行数:103,代码来源:test_time_gen.py

示例4: test_generalization_across_time

# 需要导入模块: from mne.decoding import GeneralizationAcrossTime [as 别名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 别名]
def test_generalization_across_time():
    """Test time generalization decoding
    """
    from sklearn.svm import SVC
    from sklearn.linear_model import RANSACRegressor, LinearRegression
    from sklearn.preprocessing import LabelEncoder
    from sklearn.metrics import mean_squared_error
    from sklearn.cross_validation import LeaveOneLabelOut

    epochs = make_epochs()

    # Test default running
    gat = GeneralizationAcrossTime(picks='foo')
    assert_equal("<GAT | no fit, no prediction, no score>", "%s" % gat)
    assert_raises(ValueError, gat.fit, epochs)
    with warnings.catch_warnings(record=True):
        # check classic fit + check manual picks
        gat.picks = [0]
        gat.fit(epochs)
        # check optional y as array
        gat.picks = None
        gat.fit(epochs, y=epochs.events[:, 2])
        # check optional y as list
        gat.fit(epochs, y=epochs.events[:, 2].tolist())
    assert_equal(len(gat.picks_), len(gat.ch_names), 1)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), no "
                 "prediction, no score>", '%s' % gat)
    assert_equal(gat.ch_names, epochs.ch_names)
    gat.predict(epochs)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predicted 14 epochs, no score>",
                 "%s" % gat)
    gat.score(epochs)
    gat.score(epochs, y=epochs.events[:, 2])
    gat.score(epochs, y=epochs.events[:, 2].tolist())
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predicted 14 epochs,\n scored "
                 "(accuracy_score)>", "%s" % gat)
    with warnings.catch_warnings(record=True):
        gat.fit(epochs, y=epochs.events[:, 2])

    old_mode = gat.predict_mode
    gat.predict_mode = 'super-foo-mode'
    assert_raises(ValueError, gat.predict, epochs)
    gat.predict_mode = old_mode

    gat.score(epochs, y=epochs.events[:, 2])
    assert_true("accuracy_score" in '%s' % gat.scorer_)
    epochs2 = epochs.copy()

    # check _DecodingTime class
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.050 (s), length: 0.050 (s), n_time_windows: 15>",
                 "%s" % gat.train_times_)
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.050 (s), length: 0.050 (s), n_time_windows: 15 x 15>",
                 "%s" % gat.test_times_)

    # the y-check
    gat.predict_mode = 'mean-prediction'
    epochs2.events[:, 2] += 10
    gat_ = copy.deepcopy(gat)
    assert_raises(ValueError, gat_.score, epochs2)
    gat.predict_mode = 'cross-validation'

    # Test basics
    # --- number of trials
    assert_true(gat.y_train_.shape[0] ==
                gat.y_true_.shape[0] ==
                len(gat.y_pred_[0][0]) == 14)
    # ---  number of folds
    assert_true(np.shape(gat.estimators_)[1] == gat.cv)
    # ---  length training size
    assert_true(len(gat.train_times_['slices']) == 15 ==
                np.shape(gat.estimators_)[0])
    # ---  length testing sizes
    assert_true(len(gat.test_times_['slices']) == 15 ==
                np.shape(gat.scores_)[0])
    assert_true(len(gat.test_times_['slices'][0]) == 15 ==
                np.shape(gat.scores_)[1])

    # Test longer time window
    gat = GeneralizationAcrossTime(train_times={'length': .100})
    with warnings.catch_warnings(record=True):
        gat2 = gat.fit(epochs)
    assert_true(gat is gat2)  # return self
    assert_true(hasattr(gat2, 'cv_'))
    assert_true(gat2.cv_ != gat.cv)
    scores = gat.score(epochs)
    assert_true(isinstance(scores, list))  # type check
    assert_equal(len(scores[0]), len(scores))  # shape check

    assert_equal(len(gat.test_times_['slices'][0][0]), 2)
    # Decim training steps
    gat = GeneralizationAcrossTime(train_times={'step': .100})
    with warnings.catch_warnings(record=True):
        gat.fit(epochs)

    gat.score(epochs)
    assert_true(len(gat.scores_) == len(gat.estimators_) == 8)  # training time
#.........这里部分代码省略.........
开发者ID:Famguy,项目名称:mne-python,代码行数:103,代码来源:test_time_gen.py

示例5: EpochsArray

# 需要导入模块: from mne.decoding import GeneralizationAcrossTime [as 别名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 别名]
epochs = EpochsArray(data, info, events)

# RUN GAT ======================================================================

# SVR
# --- fit & predict separately
cos = lambda angles: np.cos(angle2circle(angles))
sin = lambda angles: np.sin(angle2circle(angles))
gats = list()
for transform in [cos, sin]:
    scaler = StandardScaler()
    svr = SVR(C=1, kernel='linear')
    clf = Pipeline([('scaler', scaler), ('svr', svr)])
    gat = GeneralizationAcrossTime(n_jobs=-1, clf=clf)
    gat.fit(epochs, y=transform(trial_angles))
    gat.predict(epochs)
    gats.append(gat)
# --- recombine
predict_angles, true_angles = recombine_svr_prediction(gats[0], gats[1])
# --- score
angle_errors_svr = compute_error_svr(predict_angles, true_angles)
plt.matshow(np.mean(angle_errors_svr,axis=2)), plt.colorbar(), plt.show()


# SVC Gat
scaler = StandardScaler()
svc = SVC(C=1, kernel='linear', probability=True)
clf = Pipeline([('scaler', scaler), ('svc', svc)])
gat = GeneralizationAcrossTime(n_jobs=-1, clf=clf, predict_type='predict_proba')
# --- fit & predict
gat.fit(epochs, y=trial_angles)
开发者ID:SherazKhan,项目名称:Paris_orientation-decoding,代码行数:33,代码来源:example_toy_data2.py

示例6: simulate_model

# 需要导入模块: from mne.decoding import GeneralizationAcrossTime [as 别名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 别名]
def simulate_model(sources, mixin, background, snr=.5, n_trial=100):
    """Run simulations :
    1. Takes source activations in two visibility conditions:
        dict(high=(n_sources * n_times), low=(n_sources * n_times))
    2. Target presence/absence is coded in y vector and corresponds to the
       reverse activation in source space.
    3. Takes a mixin matrix that project the data from source space to sensor
        space
    4. Generates multiple low and high visibility trials.
    5. Fit target presence (y) across all trials (both high and low visiblity),
    6. Score target presence separately for high and low visibility trials
    7. Fit and score target visibility (for simplicity reasons, we only have 2
       visibility conditions. Consequently, we will fit a logistic regression
       and not a ridge like the one used for in empirical part of the paper.)
    """
    n_source, n_chan = mixin.shape

    # add information
    X, y, visibility = list(), list(), list()
    for vis, source in sources.iteritems():
        n_source, n_time = source.shape
        # define present and absent in source space
        present = np.stack([source + background] * (n_trial // 2))
        absent = np.stack([background] * (n_trial // 2))
        source = np.vstack((present, absent))
        y_ = np.hstack((np.ones(n_trial // 2), -1 * np.ones(n_trial // 2)))

        # transform in sensor space
        sensor = np.dot(mixin.T, np.hstack((source)))
        sensor = np.reshape(sensor, [n_chan, -1, n_time]).transpose(1, 0, 2)

        # add sensor specific  noise
        sensor += np.random.randn(n_trial, n_chan, n_time) / snr
        X.append(sensor)
        y.append(y_)
        visibility.append(int(vis == 'high') * np.ones(n_trial))
    X = np.concatenate(X, axis=0)
    y = np.concatenate(y, axis=0)
    visibility = np.concatenate(visibility, axis=0)

    # shuffle trials
    idx = range(n_trial * 2)
    np.random.shuffle(idx)
    X, y, visibility = X[idx], y[idx], visibility[idx]

    # format to MNE epochs
    epochs = EpochsArray(X, create_info(n_chan, sfreq, 'mag'), tmin=times[0],
                         proj=False, baseline=None)

    # Temporal generalization pipeline
    gat = GeneralizationAcrossTime(clf=analysis['clf'], cv=8,
                                   scorer=scorer_auc, n_jobs=-1,
                                   score_mode='mean-sample-wise')

    gat.fit(epochs, y=y)
    y_pred = gat.predict(epochs)
    y_pred = y_pred[:, :, :, 0].transpose(2, 0, 1)

    score = list()
    for vis in range(2):
        # select all absent trials + present at a given visibility
        sel = np.unique(np.hstack((np.where(y == -1)[0],
                        np.where(visibility == vis)[0])))
        score_ = scorer_auc(y[sel], y_pred[sel], n_jobs=-1)
        score.append(score_)

    # correlation with visibility
    sel = np.where(y == 1)[0]
    corr_vis = scorer_spearman(visibility[sel], y_pred[sel], n_jobs=-1)

    # decode visibility
    sel = np.where(y == 1)[0]  # present trials only
    gat.fit(epochs[sel], y=visibility[sel])
    score_vis = gat.score(epochs[sel], y=visibility[sel])
    return np.array(score), np.squeeze(score_vis), np.squeeze(corr_vis)
开发者ID:kingjr,项目名称:decoding_unconscious_maintenance,代码行数:77,代码来源:run_plot_simulations.py

示例7: test_generalization_across_time

# 需要导入模块: from mne.decoding import GeneralizationAcrossTime [as 别名]
# 或者: from mne.decoding.GeneralizationAcrossTime import predict [as 别名]
def test_generalization_across_time():
    """Test time generalization decoding
    """
    from sklearn.svm import SVC

    raw = io.Raw(raw_fname, preload=False)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg='mag', stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[0:2]
    decim = 30

    # Test on time generalization within one condition
    with warnings.catch_warnings(record=True):
        epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                        baseline=(None, 0), preload=True, decim=decim)
    # Test default running
    gat = GeneralizationAcrossTime()
    assert_equal("<GAT | no fit, no prediction, no score>", "%s" % gat)
    with warnings.catch_warnings(record=True):
        gat.fit(epochs)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), no "
                 "prediction, no score>", '%s' % gat)
    gat.predict(epochs)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predict_type : 'predict' on 15 epochs, no score>",
                 "%s" % gat)
    gat.score(epochs)
    assert_equal("<GAT | fitted, start : -0.200 (s), stop : 0.499 (s), "
                 "predict_type : 'predict' on 15 epochs,\n scored "
                 "(accuracy_score)>", "%s" % gat)
    with warnings.catch_warnings(record=True):
        gat.fit(epochs, y=epochs.events[:, 2])

    old_type = gat.predict_type
    gat.predict_type = 'foo'
    assert_raises(ValueError, gat.predict, epochs)
    gat.predict_type = old_type

    old_mode = gat.predict_mode
    gat.predict_mode = 'super-foo-mode'
    assert_raises(ValueError, gat.predict, epochs)
    gat.predict_mode = old_mode

    gat.score(epochs, y=epochs.events[:, 2])
    assert_true("accuracy_score" in '%s' % gat.scorer_)
    epochs2 = epochs.copy()

    # check _DecodingTime class
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.047 (s), length: 0.047 (s), n_time_windows: 15>",
                 "%s" % gat.train_times)
    assert_equal("<DecodingTime | start: -0.200 (s), stop: 0.499 (s), step: "
                 "0.047 (s), length: 0.047 (s), n_time_windows: 15 x 15>",
                 "%s" % gat.test_times_)

    # the y-check
    gat.predict_mode = 'mean-prediction'
    epochs2.events[:, 2] += 10
    assert_raises(ValueError, gat.score, epochs2)
    gat.predict_mode = 'cross-validation'

    # Test basics
    # --- number of trials
    assert_true(gat.y_train_.shape[0] ==
                gat.y_true_.shape[0] ==
                gat.y_pred_.shape[2] == 14)
    # ---  number of folds
    assert_true(np.shape(gat.estimators_)[1] == gat.cv)
    # ---  length training size
    assert_true(len(gat.train_times['slices']) == 15 ==
                np.shape(gat.estimators_)[0])
    # ---  length testing sizes
    assert_true(len(gat.test_times_['slices']) == 15 ==
                np.shape(gat.scores_)[0])
    assert_true(len(gat.test_times_['slices'][0]) == 15 ==
                np.shape(gat.scores_)[1])

    # Test longer time window
    gat = GeneralizationAcrossTime(train_times={'length': .100})
    with warnings.catch_warnings(record=True):
        gat2 = gat.fit(epochs)
    assert_true(gat is gat2)  # return self
    assert_true(hasattr(gat2, 'cv_'))
    assert_true(gat2.cv_ != gat.cv)
    scores = gat.score(epochs)
    assert_true(isinstance(scores, list))  # type check
    assert_equal(len(scores[0]), len(scores))  # shape check

    assert_equal(len(gat.test_times_['slices'][0][0]), 2)
    # Decim training steps
    gat = GeneralizationAcrossTime(train_times={'step': .100})
    with warnings.catch_warnings(record=True):
        gat.fit(epochs)

    gat.score(epochs)
    assert_equal(len(gat.scores_), 8)

    # Test start stop training
    gat = GeneralizationAcrossTime(train_times={'start': 0.090,
#.........这里部分代码省略.........
开发者ID:pombreda,项目名称:mne-python,代码行数:103,代码来源:test_time_gen.py


注:本文中的mne.decoding.GeneralizationAcrossTime.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。