当前位置: 首页>>代码示例>>Python>>正文


Python GeneralizationAcrossTime._cv_splits[0]方法代码示例

本文整理汇总了Python中mne.decoding.GeneralizationAcrossTime._cv_splits[0]方法的典型用法代码示例。如果您正苦于以下问题:Python GeneralizationAcrossTime._cv_splits[0]方法的具体用法?Python GeneralizationAcrossTime._cv_splits[0]怎么用?Python GeneralizationAcrossTime._cv_splits[0]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.decoding.GeneralizationAcrossTime的用法示例。


在下文中一共展示了GeneralizationAcrossTime._cv_splits[0]方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_generalization_across_time

# 需要导入模块: from mne.decoding import GeneralizationAcrossTime [as 别名]
# 或者: from mne.decoding.GeneralizationAcrossTime import _cv_splits[0] [as 别名]

#.........这里部分代码省略.........
        gat.score(epochs)
    assert_array_equal(np.shape(gat.y_pred_[0]), [1, len(epochs), 1])
    assert_array_equal(np.shape(gat.y_pred_[1]), [2, len(epochs), 1])
    # check cannot Automatically infer testing times for adhoc training times
    gat.test_times = None
    assert_raises(ValueError, gat.predict, epochs)

    svc = SVC(C=1, kernel='linear', probability=True)
    gat = GeneralizationAcrossTime(clf=svc, predict_mode='mean-prediction')
    with warnings.catch_warnings(record=True):
        gat.fit(epochs)

    # sklearn needs it: c.f.
    # https://github.com/scikit-learn/scikit-learn/issues/2723
    # and http://bit.ly/1u7t8UT
    with use_log_level('error'):
        assert_raises(ValueError, gat.score, epochs2)
        gat.score(epochs)
    assert_true(0.0 <= np.min(scores) <= 1.0)
    assert_true(0.0 <= np.max(scores) <= 1.0)

    # Test that gets error if train on one dataset, test on another, and don't
    # specify appropriate cv:
    gat = GeneralizationAcrossTime(cv=cv_shuffle)
    gat.fit(epochs)
    with warnings.catch_warnings(record=True):
        gat.fit(epochs)

    gat.predict(epochs)
    assert_raises(ValueError, gat.predict, epochs[:10])

    # Make CV with some empty train and test folds:
    # --- empty test fold(s) should warn when gat.predict()
    gat._cv_splits[0] = [gat._cv_splits[0][0], np.empty(0)]
    with warnings.catch_warnings(record=True) as w:
        gat.predict(epochs)
        assert_true(len(w) > 0)
        assert_true(any('do not have any test epochs' in str(ww.message)
                        for ww in w))
    # --- empty train fold(s) should raise when gat.fit()
    gat = GeneralizationAcrossTime(cv=[([0], [1]), ([], [0])])
    assert_raises(ValueError, gat.fit, epochs[:2])

    # Check that still works with classifier that output y_pred with
    # shape = (n_trials, 1) instead of (n_trials,)
    if check_version('sklearn', '0.17'):  # no is_regressor before v0.17
        gat = GeneralizationAcrossTime(clf=KernelRidge(), cv=2)
        epochs.crop(None, epochs.times[2])
        gat.fit(epochs)
        # With regression the default cv is KFold and not StratifiedKFold
        assert_true(gat.cv_.__class__ == KFold)
        gat.score(epochs)
        # with regression the default scoring metrics is mean squared error
        assert_true(gat.scorer_.__name__ == 'mean_squared_error')

    # Test combinations of complex scenarios
    # 2 or more distinct classes
    n_classes = [2, 4]  # 4 tested
    # nicely ordered labels or not
    le = LabelEncoder()
    y = le.fit_transform(epochs.events[:, 2])
    y[len(y) // 2:] += 2
    ys = (y, y + 1000)
    # Univariate and multivariate prediction
    svc = SVC(C=1, kernel='linear', probability=True)
    reg = KernelRidge()
开发者ID:jmontoyam,项目名称:mne-python,代码行数:70,代码来源:test_time_gen.py


注:本文中的mne.decoding.GeneralizationAcrossTime._cv_splits[0]方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。