本文整理汇总了Python中mlxtend.regressor.StackingRegressor.predict方法的典型用法代码示例。如果您正苦于以下问题:Python StackingRegressor.predict方法的具体用法?Python StackingRegressor.predict怎么用?Python StackingRegressor.predict使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mlxtend.regressor.StackingRegressor
的用法示例。
在下文中一共展示了StackingRegressor.predict方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_features_in_secondary
# 需要导入模块: from mlxtend.regressor import StackingRegressor [as 别名]
# 或者: from mlxtend.regressor.StackingRegressor import predict [as 别名]
def test_features_in_secondary():
lr = LinearRegression()
svr_lin = SVR(kernel='linear', gamma='auto')
rf = RandomForestRegressor(n_estimators=10, random_state=2)
ridge = Ridge(random_state=0)
svr_rbf = SVR(kernel='rbf', gamma='auto')
stack = StackingRegressor(regressors=[svr_lin, lr, ridge, rf],
meta_regressor=svr_rbf,
use_features_in_secondary=True)
stack.fit(X1, y).predict(X1)
mse = 0.14
got = np.mean((stack.predict(X1) - y) ** 2)
print(got)
assert round(got, 2) == mse
stack = StackingRegressor(regressors=[svr_lin, lr, ridge, rf],
meta_regressor=svr_rbf,
use_features_in_secondary=False)
# dense
stack.fit(X1, y).predict(X1)
mse = 0.12
got = np.mean((stack.predict(X1) - y) ** 2)
print(got)
assert round(got, 2) == mse
示例2: test_multivariate_class
# 需要导入模块: from mlxtend.regressor import StackingRegressor [as 别名]
# 或者: from mlxtend.regressor.StackingRegressor import predict [as 别名]
def test_multivariate_class():
lr = LinearRegression()
ridge = Ridge(random_state=1)
meta = LinearRegression(normalize=True)
stregr = StackingRegressor(regressors=[lr, ridge],
meta_regressor=meta)
stregr.fit(X2, y2).predict(X2)
mse = 0.122
got = np.mean((stregr.predict(X2) - y2) ** 2)
assert round(got, 3) == mse
示例3: test_predict_meta_features
# 需要导入模块: from mlxtend.regressor import StackingRegressor [as 别名]
# 或者: from mlxtend.regressor.StackingRegressor import predict [as 别名]
def test_predict_meta_features():
lr = LinearRegression()
svr_rbf = SVR(kernel='rbf')
ridge = Ridge(random_state=1)
stregr = StackingRegressor(regressors=[lr, ridge],
meta_regressor=svr_rbf)
X_train, X_test, y_train, y_test = train_test_split(X2, y, test_size=0.3)
stregr.fit(X_train, y_train)
test_meta_features = stregr.predict(X_test)
assert test_meta_features.shape[0] == X_test.shape[0]
示例4: test_multivariate
# 需要导入模块: from mlxtend.regressor import StackingRegressor [as 别名]
# 或者: from mlxtend.regressor.StackingRegressor import predict [as 别名]
def test_multivariate():
lr = LinearRegression()
svr_lin = SVR(kernel='linear')
ridge = Ridge(random_state=1)
svr_rbf = SVR(kernel='rbf')
stregr = StackingRegressor(regressors=[svr_lin, lr, ridge],
meta_regressor=svr_rbf)
stregr.fit(X2, y).predict(X2)
mse = 0.218
got = np.mean((stregr.predict(X2) - y) ** 2)
assert round(got, 3) == mse
示例5: test_different_models
# 需要导入模块: from mlxtend.regressor import StackingRegressor [as 别名]
# 或者: from mlxtend.regressor.StackingRegressor import predict [as 别名]
def test_different_models():
lr = LinearRegression()
svr_lin = SVR(kernel='linear')
ridge = Ridge(random_state=1)
svr_rbf = SVR(kernel='rbf')
stregr = StackingRegressor(regressors=[svr_lin, lr, ridge],
meta_regressor=svr_rbf)
y_pred = stregr.fit(X1, y).predict(X1)
mse = 0.214
got = np.mean((stregr.predict(X1) - y) ** 2)
assert round(got, 3) == mse
示例6: test_multivariate_class
# 需要导入模块: from mlxtend.regressor import StackingRegressor [as 别名]
# 或者: from mlxtend.regressor.StackingRegressor import predict [as 别名]
def test_multivariate_class():
lr = LinearRegression()
ridge = Ridge(random_state=1)
meta = LinearRegression(normalize=True)
stregr = StackingRegressor(regressors=[lr, ridge],
meta_regressor=meta)
stregr.fit(X2, y2).predict(X2)
mse = 0.12
got = np.mean((stregr.predict(X2) - y2) ** 2.)
# there seems to be an issue with the following test on Windows
# sometimes via Appveyor
assert round(got, 2) == mse, got
示例7: test_sample_weight
# 需要导入模块: from mlxtend.regressor import StackingRegressor [as 别名]
# 或者: from mlxtend.regressor.StackingRegressor import predict [as 别名]
def test_sample_weight():
lr = LinearRegression()
svr_lin = SVR(kernel='linear', gamma='auto')
ridge = Ridge(random_state=1)
svr_rbf = SVR(kernel='rbf', gamma='auto')
stregr = StackingRegressor(regressors=[svr_lin, lr, ridge],
meta_regressor=svr_rbf)
pred1 = stregr.fit(X1, y, sample_weight=w).predict(X1)
mse = 0.22
got = np.mean((stregr.predict(X1) - y) ** 2)
assert round(got, 2) == mse
# make sure that this is not equivalent to the model with no weight
pred2 = stregr.fit(X1, y).predict(X1)
maxdiff = np.max(np.abs(pred1 - pred2))
assert maxdiff > 1e-3, "max diff is %.4f" % maxdiff
示例8: train
# 需要导入模块: from mlxtend.regressor import StackingRegressor [as 别名]
# 或者: from mlxtend.regressor.StackingRegressor import predict [as 别名]
def train(self, X,y):
features = X
labels = y
#test train split
X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.25, random_state=4)
#Ridge
regcv = linear_model.RidgeCV(alphas=[0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75])
regcv.fit(features, labels)
regcv.alpha_
reg = linear_model.Ridge(alpha=regcv.alpha_)
reg.fit(features, labels)
# GB
params = {'n_estimators': 100, 'max_depth': 5, 'min_samples_split': 2,
'learning_rate': 0.1, 'loss': 'ls'}
gbr = ensemble.GradientBoostingRegressor(**params)
gbr.fit(features, labels)
#blended model
meta = linear_model.LinearRegression()
blender = StackingRegressor(regressors=[reg, gbr], meta_regressor=meta)
_=blender.fit(features, labels)
y_pred = blender.predict(X_test)
print "***** TRAINING STATS ********"
scores = cross_val_score(blender, features, labels, cv=10)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
mean_diff = np.mean(np.abs(np.exp(Y_test)-np.exp(y_pred)))
p_mean_diff = np.mean(mean_diff/np.exp(Y_test))
print "Mean Error:\t %.0f/%0.3f%%" % (mean_diff, p_mean_diff*100)
print "***** TRAINING STATS ********"
return blender