当前位置: 首页>>代码示例>>Python>>正文


Python Scale.apply_inplace方法代码示例

本文整理汇总了Python中menpo.transform.Scale.apply_inplace方法的典型用法代码示例。如果您正苦于以下问题:Python Scale.apply_inplace方法的具体用法?Python Scale.apply_inplace怎么用?Python Scale.apply_inplace使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在menpo.transform.Scale的用法示例。


在下文中一共展示了Scale.apply_inplace方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: shapes

# 需要导入模块: from menpo.transform import Scale [as 别名]
# 或者: from menpo.transform.Scale import apply_inplace [as 别名]
    def shapes(self, as_points=False):
        r"""
        Generates a list containing the shapes obtained at each fitting
        iteration.

        Parameters
        -----------
        as_points: boolean, optional
            Whether the results is returned as a list of PointClouds or
            ndarrays.

            Default: False

        Returns
        -------
        shapes: :class:`menpo.shape.PointCoulds or ndarray list
            A list containing the shapes obtained at each fitting iteration.
        """
        n = self.n_levels - 1

        shapes = []
        for j, f in enumerate(self.fittings):
            if self.scaled_levels:
                transform = Scale(self.downscale ** (n - j), 2)
                for t in f.shapes(as_points=as_points):
                    transform.apply_inplace(t)
                    shapes.append(self._affine_correction.apply(t))
            else:
                for t in f.shapes(as_points=as_points):
                    shapes.append(self._affine_correction.apply(t))

        return shapes
开发者ID:jabooth,项目名称:menpo-archive,代码行数:34,代码来源:fittingresult.py

示例2: _train

# 需要导入模块: from menpo.transform import Scale [as 别名]
# 或者: from menpo.transform.Scale import apply_inplace [as 别名]
    def _train(self, original_images, group=None, bounding_box_group_glob=None,
               verbose=False):
        r"""
        """
        # Dlib does not support incremental builds, so we must be passed a list
        if not isinstance(original_images, list):
            original_images = list(original_images)
        # We use temporary landmark groups - so we need the group key to not be
        # None
        if group is None:
            group = original_images[0].landmarks.group_labels[0]

        # Temporarily store all the bounding boxes for rescaling
        for i in original_images:
            i.landmarks['__gt_bb'] = i.landmarks[group].lms.bounding_box()

        if self.reference_shape is None:
            # If no reference shape was given, use the mean of the first batch
            self.reference_shape = compute_reference_shape(
                [i.landmarks['__gt_bb'].lms for i in original_images],
                self.diagonal, verbose=verbose)

        # Rescale to existing reference shape
        images = rescale_images_to_reference_shape(
            original_images, '__gt_bb', self.reference_shape,
            verbose=verbose)

        # Scaling is done - remove temporary gt bounding boxes
        for i, i2 in zip(original_images, images):
            del i.landmarks['__gt_bb']
            del i2.landmarks['__gt_bb']

        generated_bb_func = generate_perturbations_from_gt(
            images, self.n_perturbations, self._perturb_from_gt_bounding_box,
            gt_group=group, bb_group_glob=bounding_box_group_glob,
            verbose=verbose)

        # for each scale (low --> high)
        current_bounding_boxes = []
        for j in range(self.n_scales):
            if verbose:
                if len(self.scales) > 1:
                    scale_prefix = '  - Scale {}: '.format(j)
                else:
                    scale_prefix = '  - '
            else:
                scale_prefix = None

            # handle scales
            if self.scales[j] != 1:
                # Scale feature images only if scale is different than 1
                scaled_images = scale_images(images, self.scales[j],
                                             prefix=scale_prefix,
                                             verbose=verbose)
            else:
                scaled_images = images

            if j == 0:
                current_bounding_boxes = [generated_bb_func(im)
                                          for im in scaled_images]

            # Extract scaled ground truth shapes for current scale
            scaled_gt_shapes = [i.landmarks[group].lms for i in scaled_images]

            # Train the Dlib model
            current_bounding_boxes = self.algorithms[j].train(
                scaled_images, scaled_gt_shapes, current_bounding_boxes,
                prefix=scale_prefix, verbose=verbose)

            # Scale current shapes to next resolution, don't bother
            # scaling final level
            if j != (self.n_scales - 1):
                transform = Scale(self.scales[j + 1] / self.scales[j],
                                  n_dims=2)
                for bboxes in current_bounding_boxes:
                    for bb in bboxes:
                        transform.apply_inplace(bb)
开发者ID:HaoyangWang,项目名称:menpofit,代码行数:79,代码来源:fitter.py

示例3: _train_batch

# 需要导入模块: from menpo.transform import Scale [as 别名]
# 或者: from menpo.transform.Scale import apply_inplace [as 别名]
    def _train_batch(self, image_batch, increment=False, group=None,
                     bounding_box_group_glob=None, verbose=False):
        # Rescale to existing reference shape
        image_batch = rescale_images_to_reference_shape(
            image_batch, group, self.reference_shape,
            verbose=verbose)

        generated_bb_func = generate_perturbations_from_gt(
            image_batch, self.n_perturbations,
            self._perturb_from_gt_bounding_box, gt_group=group,
            bb_group_glob=bounding_box_group_glob, verbose=verbose)

        # for each scale (low --> high)
        current_shapes = []
        for j in range(self.n_scales):
            if verbose:
                if len(self.scales) > 1:
                    scale_prefix = '  - Scale {}: '.format(j)
                else:
                    scale_prefix = '  - '
            else:
                scale_prefix = None

            # Handle holistic features
            if j == 0 and self.holistic_features[j] == no_op:
                # Saves a lot of memory
                feature_images = image_batch
            elif j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
                # Compute features only if this is the first pass through
                # the loop or the features at this scale are different from
                # the features at the previous scale
                feature_images = compute_features(image_batch,
                                                  self.holistic_features[j],
                                                  prefix=scale_prefix,
                                                  verbose=verbose)
            # handle scales
            if self.scales[j] != 1:
                # Scale feature images only if scale is different than 1
                scaled_images = scale_images(feature_images, self.scales[j],
                                             prefix=scale_prefix,
                                             verbose=verbose)
            else:
                scaled_images = feature_images

            # Extract scaled ground truth shapes for current scale
            scaled_shapes = [i.landmarks[group].lms for i in scaled_images]

            if j == 0:
                msg = '{}Aligning reference shape with bounding boxes.'.format(
                    scale_prefix)
                wrap = partial(print_progress, prefix=msg,
                               end_with_newline=False, verbose=verbose)

                # Extract perturbations at the very bottom level
                for ii in wrap(scaled_images):
                    c_shapes = []
                    for bbox in generated_bb_func(ii):
                        c_s = align_shape_with_bounding_box(
                            self.reference_shape, bbox)
                        c_shapes.append(c_s)
                    current_shapes.append(c_shapes)

            # train supervised descent algorithm
            if not increment:
                current_shapes = self.algorithms[j].train(
                    scaled_images, scaled_shapes, current_shapes,
                    prefix=scale_prefix, verbose=verbose)
            else:
                current_shapes = self.algorithms[j].increment(
                    scaled_images, scaled_shapes, current_shapes,
                    prefix=scale_prefix, verbose=verbose)

            # Scale current shapes to next resolution, don't bother
            # scaling final level
            if j != (self.n_scales - 1):
                transform = Scale(self.scales[j + 1] / self.scales[j],
                                  n_dims=2)
                for image_shapes in current_shapes:
                    for shape in image_shapes:
                        transform.apply_inplace(shape)
开发者ID:HaoyangWang,项目名称:menpofit,代码行数:82,代码来源:fitter.py


注:本文中的menpo.transform.Scale.apply_inplace方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。