当前位置: 首页>>代码示例>>Python>>正文


Python Scale.apply方法代码示例

本文整理汇总了Python中menpo.transform.Scale.apply方法的典型用法代码示例。如果您正苦于以下问题:Python Scale.apply方法的具体用法?Python Scale.apply怎么用?Python Scale.apply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在menpo.transform.Scale的用法示例。


在下文中一共展示了Scale.apply方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: shapes

# 需要导入模块: from menpo.transform import Scale [as 别名]
# 或者: from menpo.transform.Scale import apply [as 别名]
    def shapes(self, as_points=False):
        r"""
        Generates a list containing the shapes obtained at each fitting
        iteration.

        Parameters
        -----------
        as_points : `boolean`, optional
            Whether the result is returned as a `list` of :map:`PointCloud` or
            a `list` of `ndarrays`.

        Returns
        -------
        shapes : `list` of :map:`PointCoulds` or `list` of `ndarray`
            A list containing the fitted shapes at each iteration of
            the fitting procedure.
        """
        shapes = []
        for j, (alg, s) in enumerate(zip(self.algorithm_results, self.scales)):
            transform = Scale(self.scales[-1]/s, alg.final_shape.n_dims)
            for t in alg.shapes(as_points=as_points):
                t = transform.apply(t)
                shapes.append(self._affine_correction.apply(t))

        return shapes
开发者ID:jalabort,项目名称:alabortijcv2015,代码行数:27,代码来源:result.py

示例2: tcoords_pixel_scaled

# 需要导入模块: from menpo.transform import Scale [as 别名]
# 或者: from menpo.transform.Scale import apply [as 别名]
    def tcoords_pixel_scaled(self):
        r"""
        Returns a :map:`PointCloud` that is modified to be suitable for directly
        indexing into the pixels of the texture (e.g. for manual mapping
        operations). The resulting tcoords behave just like image landmarks
        do.

        The operations that are performed are:

          - Flipping the origin from bottom-left to top-left
          - Scaling the tcoords by the image shape (denormalising them)
          - Permuting the axis so that

        Returns
        -------
        tcoords_scaled : :map:`PointCloud`
            A copy of the tcoords that behave like :map:`Image` landmarks

        Examples
        --------
        Recovering pixel values for every texture coordinate:

        >>> texture = texturedtrimesh.texture
        >>> tc_ps = texturedtrimesh.tcoords_pixel_scaled()
        >>> pixel_values_at_tcs = texture[tc_ps[: ,0], tc_ps[:, 1]]
        """
        scale = Scale(np.array(self.texture.shape)[::-1])
        tcoords = self.tcoords.points.copy()
        # flip the 'y' st 1 -> 0 and 0 -> 1, moving the axis to upper left
        tcoords[:, 1] = 1 - tcoords[:, 1]
        # apply the scale to get the units correct
        tcoords = scale.apply(tcoords)
        # flip axis 0 and axis 1 so indexing is as expected
        tcoords = tcoords[:, ::-1]
        return PointCloud(tcoords)
开发者ID:OlivierML,项目名称:menpo,代码行数:37,代码来源:textured.py

示例3: _rescale_shapes_to_reference

# 需要导入模块: from menpo.transform import Scale [as 别名]
# 或者: from menpo.transform.Scale import apply [as 别名]
def _rescale_shapes_to_reference(fitting_results, n_levels, downscale,
                                 affine_correction):
    n = n_levels - 1
    shapes = []
    for j, f in enumerate(fitting_results):
        transform = Scale(downscale ** (n - j), f.final_shape.n_dims)
        for t in f.shapes:
            t = transform.apply(t)
            shapes.append(affine_correction.apply(t))
    return shapes
开发者ID:OlivierML,项目名称:menpofit,代码行数:12,代码来源:fittingresult.py

示例4: _rescale_shapes_to_reference

# 需要导入模块: from menpo.transform import Scale [as 别名]
# 或者: from menpo.transform.Scale import apply [as 别名]
def _rescale_shapes_to_reference(algorithm_results, scales, affine_correction):
    r"""
    """
    shapes = []
    for j, (alg, scale) in enumerate(zip(algorithm_results, scales)):
        transform = Scale(scales[-1] / scale, alg.final_shape.n_dims)
        for shape in alg.shapes:
            shape = transform.apply(shape)
            shapes.append(affine_correction.apply(shape))
    return shapes
开发者ID:mengjiaow,项目名称:menpofit,代码行数:12,代码来源:result.py

示例5: chain_compose_before_tps_test

# 需要导入模块: from menpo.transform import Scale [as 别名]
# 或者: from menpo.transform.Scale import apply [as 别名]
def chain_compose_before_tps_test():
    a = PointCloud(np.random.random([10, 2]))
    b = PointCloud(np.random.random([10, 2]))
    tps = ThinPlateSplines(a, b)

    t = Translation([3, 4])
    s = Scale([4, 2])
    chain = TransformChain([t, s])
    chain_mod = chain.compose_before(tps)

    points = PointCloud(np.random.random([10, 2]))

    manual_res = tps.apply(s.apply(t.apply(points)))
    chain_res = chain_mod.apply(points)
    assert(np.all(manual_res.points == chain_res.points))
开发者ID:HaoyangWang,项目名称:menpo,代码行数:17,代码来源:compose_chain_test.py

示例6: _train_batch

# 需要导入模块: from menpo.transform import Scale [as 别名]
# 或者: from menpo.transform.Scale import apply [as 别名]
    def _train_batch(self, template, shape_batch, increment=False, group=None,
                     shape_forgetting_factor=1.0, verbose=False):
        r"""
        Builds an Active Template Model from a list of landmarked images.
        """
        # build models at each scale
        if verbose:
            print_dynamic('- Building models\n')

        feature_images = []
        # for each scale (low --> high)
        for j in range(self.n_scales):
            if verbose:
                if len(self.scales) > 1:
                    scale_prefix = '  - Scale {}: '.format(j)
                else:
                    scale_prefix = '  - '
            else:
                scale_prefix = None

            # Handle features
            if j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
                # Compute features only if this is the first pass through
                # the loop or the features at this scale are different from
                # the features at the previous scale
                feature_images = compute_features([template],
                                                  self.holistic_features[j],
                                                  prefix=scale_prefix,
                                                  verbose=verbose)
            # handle scales
            if self.scales[j] != 1:
                # Scale feature images only if scale is different than 1
                scaled_images = scale_images(feature_images, self.scales[j],
                                             prefix=scale_prefix,
                                             verbose=verbose)
                # Extract potentially rescaled shapes
                scale_transform = Scale(scale_factor=self.scales[j],
                                        n_dims=2)
                scale_shapes = [scale_transform.apply(s)
                                for s in shape_batch]
            else:
                scaled_images = feature_images
                scale_shapes = shape_batch

            # Build the shape model
            if verbose:
                print_dynamic('{}Building shape model'.format(scale_prefix))

            if not increment:
                if j == 0:
                    shape_model = self._build_shape_model(scale_shapes, j)
                    self.shape_models.append(shape_model)
                else:
                    self.shape_models.append(deepcopy(shape_model))
            else:
                self._increment_shape_model(
                    scale_shapes,  self.shape_models[j],
                    forgetting_factor=shape_forgetting_factor)

            # Obtain warped images - we use a scaled version of the
            # reference shape, computed here. This is because the mean
            # moves when we are incrementing, and we need a consistent
            # reference frame.
            scaled_reference_shape = Scale(self.scales[j], n_dims=2).apply(
                self.reference_shape)
            warped_template = self._warp_template(scaled_images[0], group,
                                                  scaled_reference_shape,
                                                  j, scale_prefix, verbose)
            self.warped_templates.append(warped_template[0])

            if verbose:
                print_dynamic('{}Done\n'.format(scale_prefix))

        # Because we just copy the shape model, we need to wait to trim
        # it after building each model. This ensures we can have a different
        # number of components per level
        for j, sm in enumerate(self.shape_models):
            max_sc = self.max_shape_components[j]
            if max_sc is not None:
                sm.trim_components(max_sc)
开发者ID:HaoyangWang,项目名称:menpofit,代码行数:82,代码来源:base.py

示例7: _train_batch

# 需要导入模块: from menpo.transform import Scale [as 别名]
# 或者: from menpo.transform.Scale import apply [as 别名]
    def _train_batch(
        self, template, shape_batch, increment=False, group=None, shape_forgetting_factor=1.0, verbose=False
    ):
        r"""
        Builds an Active Template Model from a list of landmarked images.
        """
        # build models at each scale
        if verbose:
            print_dynamic("- Building models\n")

        feature_images = []
        # for each scale (low --> high)
        for j in range(self.n_scales):
            if verbose:
                if len(self.scales) > 1:
                    scale_prefix = "  - Scale {}: ".format(j)
                else:
                    scale_prefix = "  - "
            else:
                scale_prefix = None

            # Handle features
            if j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
                # Compute features only if this is the first pass through
                # the loop or the features at this scale are different from
                # the features at the previous scale
                feature_images = compute_features(
                    [template], self.holistic_features[j], prefix=scale_prefix, verbose=verbose
                )
            # handle scales
            if self.scales[j] != 1:
                # Scale feature images only if scale is different than 1
                scaled_images = scale_images(feature_images, self.scales[j], prefix=scale_prefix, verbose=verbose)
                # Extract potentially rescaled shapes
                scale_transform = Scale(scale_factor=self.scales[j], n_dims=2)
                scale_shapes = [scale_transform.apply(s) for s in shape_batch]
            else:
                scaled_images = feature_images
                scale_shapes = shape_batch

            # Build the shape model
            if verbose:
                print_dynamic("{}Building shape model".format(scale_prefix))

            if not increment:
                shape_model = self._build_shape_model(scale_shapes, j)
                self.shape_models.append(shape_model)
            else:
                self._increment_shape_model(scale_shapes, j, forgetting_factor=shape_forgetting_factor)

            # Obtain warped images - we use a scaled version of the
            # reference shape, computed here. This is because the mean
            # moves when we are incrementing, and we need a consistent
            # reference frame.
            scaled_reference_shape = Scale(self.scales[j], n_dims=2).apply(self.reference_shape)
            warped_template = self._warp_template(
                scaled_images[0], group, scaled_reference_shape, j, scale_prefix, verbose
            )
            self.warped_templates.append(warped_template[0])

            if verbose:
                print_dynamic("{}Done\n".format(scale_prefix))
开发者ID:lydonchandra,项目名称:menpofit,代码行数:64,代码来源:base.py

示例8: _train

# 需要导入模块: from menpo.transform import Scale [as 别名]
# 或者: from menpo.transform.Scale import apply [as 别名]
    def _train(self, original_images, group=None, bounding_box_group_glob=None,
               verbose=False):
        # Dlib does not support incremental builds, so we must be passed a list
        if not isinstance(original_images, list):
            original_images = list(original_images)
        # We use temporary landmark groups - so we need the group key to not be
        # None
        if group is None:
            group = original_images[0].landmarks.group_labels[0]

        # Temporarily store all the bounding boxes for rescaling
        for i in original_images:
            i.landmarks['__gt_bb'] = i.landmarks[group].lms.bounding_box()

        if self.reference_shape is None:
            # If no reference shape was given, use the mean of the first batch
            self.reference_shape = compute_reference_shape(
                [i.landmarks['__gt_bb'].lms for i in original_images],
                self.diagonal, verbose=verbose)

        # Rescale to existing reference shape
        images = rescale_images_to_reference_shape(
            original_images, '__gt_bb', self.reference_shape,
            verbose=verbose)

        # Scaling is done - remove temporary gt bounding boxes
        for i, i2 in zip(original_images, images):
            del i.landmarks['__gt_bb']
            del i2.landmarks['__gt_bb']

        generated_bb_func = generate_perturbations_from_gt(
            images, self.n_perturbations, self._perturb_from_gt_bounding_box,
            gt_group=group, bb_group_glob=bounding_box_group_glob,
            verbose=verbose)

        # for each scale (low --> high)
        current_bounding_boxes = []
        for j in range(self.n_scales):
            if verbose:
                if len(self.scales) > 1:
                    scale_prefix = '  - Scale {}: '.format(j)
                else:
                    scale_prefix = '  - '
            else:
                scale_prefix = None

            # handle scales
            if self.scales[j] != 1:
                # Scale feature images only if scale is different than 1
                scaled_images = scale_images(images, self.scales[j],
                                             prefix=scale_prefix,
                                             verbose=verbose)
            else:
                scaled_images = images

            if j == 0:
                current_bounding_boxes = [generated_bb_func(im)
                                          for im in scaled_images]

            # Extract scaled ground truth shapes for current scale
            scaled_gt_shapes = [i.landmarks[group].lms for i in scaled_images]

            # Train the Dlib model
            current_bounding_boxes = self.algorithms[j].train(
                scaled_images, scaled_gt_shapes, current_bounding_boxes,
                prefix=scale_prefix, verbose=verbose)

            # Scale current shapes to next resolution, don't bother
            # scaling final level
            if j != (self.n_scales - 1):
                transform = Scale(self.scales[j + 1] / self.scales[j],
                                  n_dims=2)
                for bboxes in current_bounding_boxes:
                    for k, bb in enumerate(bboxes):
                        bboxes[k] = transform.apply(bb)
开发者ID:Millczc,项目名称:menpofit,代码行数:77,代码来源:fitter.py

示例9: _train_batch

# 需要导入模块: from menpo.transform import Scale [as 别名]
# 或者: from menpo.transform.Scale import apply [as 别名]
    def _train_batch(self, image_batch, increment=False, group=None,
                     bounding_box_group_glob=None, verbose=False):
        # Rescale to existing reference shape
        image_batch = rescale_images_to_reference_shape(
            image_batch, group, self.reference_shape,
            verbose=verbose)

        generated_bb_func = generate_perturbations_from_gt(
            image_batch, self.n_perturbations,
            self._perturb_from_gt_bounding_box, gt_group=group,
            bb_group_glob=bounding_box_group_glob, verbose=verbose)

        # for each scale (low --> high)
        current_shapes = []
        for j in range(self.n_scales):
            if verbose:
                if len(self.scales) > 1:
                    scale_prefix = '  - Scale {}: '.format(j)
                else:
                    scale_prefix = '  - '
            else:
                scale_prefix = None

            # Handle holistic features
            if j == 0 and self.holistic_features[j] == no_op:
                # Saves a lot of memory
                feature_images = image_batch
            elif j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
                # Compute features only if this is the first pass through
                # the loop or the features at this scale are different from
                # the features at the previous scale
                feature_images = compute_features(image_batch,
                                                  self.holistic_features[j],
                                                  prefix=scale_prefix,
                                                  verbose=verbose)
            # handle scales
            if self.scales[j] != 1:
                # Scale feature images only if scale is different than 1
                scaled_images = scale_images(feature_images, self.scales[j],
                                             prefix=scale_prefix,
                                             verbose=verbose)
            else:
                scaled_images = feature_images

            # Extract scaled ground truth shapes for current scale
            scaled_shapes = [i.landmarks[group].lms for i in scaled_images]

            if j == 0:
                msg = '{}Aligning reference shape with bounding boxes.'.format(
                    scale_prefix)
                wrap = partial(print_progress, prefix=msg,
                               end_with_newline=False, verbose=verbose)

                # Extract perturbations at the very bottom level
                for ii in wrap(scaled_images):
                    c_shapes = []
                    for bbox in generated_bb_func(ii):
                        c_s = align_shape_with_bounding_box(
                            self.reference_shape, bbox)
                        c_shapes.append(c_s)
                    current_shapes.append(c_shapes)

            # train supervised descent algorithm
            if not increment:
                current_shapes = self.algorithms[j].train(
                    scaled_images, scaled_shapes, current_shapes,
                    prefix=scale_prefix, verbose=verbose)
            else:
                current_shapes = self.algorithms[j].increment(
                    scaled_images, scaled_shapes, current_shapes,
                    prefix=scale_prefix, verbose=verbose)

            # Scale current shapes to next resolution, don't bother
            # scaling final level
            if j != (self.n_scales - 1):
                transform = Scale(self.scales[j + 1] / self.scales[j],
                                  n_dims=2)
                for image_shapes in current_shapes:
                    for k, shape in enumerate(image_shapes):
                        image_shapes[k] = transform.apply(shape)
开发者ID:Millczc,项目名称:menpofit,代码行数:82,代码来源:fitter.py


注:本文中的menpo.transform.Scale.apply方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。