当前位置: 首页>>代码示例>>Python>>正文


Python PointUndirectedGraph.init_from_edges方法代码示例

本文整理汇总了Python中menpo.shape.PointUndirectedGraph.init_from_edges方法的典型用法代码示例。如果您正苦于以下问题:Python PointUndirectedGraph.init_from_edges方法的具体用法?Python PointUndirectedGraph.init_from_edges怎么用?Python PointUndirectedGraph.init_from_edges使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在menpo.shape.PointUndirectedGraph的用法示例。


在下文中一共展示了PointUndirectedGraph.init_from_edges方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: eye_ibug_close_17_to_eye_ibug_close_17

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def eye_ibug_close_17_to_eye_ibug_close_17(pcloud):
    r"""
    Apply the IBUG 17-point close eye semantic labels.

    The semantic labels applied are as follows:

      - upper_eyelid
      - lower_eyelid
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 17
    validate_input(pcloud, n_expected_points)

    upper_indices, upper_connectivity = _build_upper_eyelid()

    middle_indices = np.arange(12, 17)
    bottom_indices = np.arange(6, 12)
    lower_indices = np.hstack((bottom_indices, 0, middle_indices))
    lower_connectivity = list(zip(bottom_indices, bottom_indices[1:]))
    lower_connectivity += [(0, 12)]
    lower_connectivity += list(zip(middle_indices, middle_indices[1:]))
    lower_connectivity += [(11, 0)]

    all_connectivity = np.asarray(upper_connectivity + lower_connectivity)
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['upper_eyelid'] = upper_indices
    mapping['lower_eyelid'] = lower_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:35,代码来源:face.py

示例2: car_streetscene_20_to_car_streetscene_view_5_10

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def car_streetscene_20_to_car_streetscene_view_5_10(pcloud):
    r"""
    Apply the 10-point semantic labels of "view 5" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - right_side

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    right_side_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 9, 8])

    right_side_connectivity = connectivity_from_array(right_side_indices,
                                                      close_loop=True)

    all_connectivity = right_side_connectivity

    ind = np.array([1, 3, 5, 7, 9, 11, 13, 15, 17, 19])
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['right_side'] = right_side_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:35,代码来源:car.py

示例3: face_ibug_49_to_face_ibug_49

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def face_ibug_49_to_face_ibug_49(pcloud):
    r"""
    Apply the IBUG 49-point semantic labels.
    The semantic labels applied are as follows:
      - left_eyebrow
      - right_eyebrow
      - nose
      - left_eye
      - right_eye
      - mouth
    References
    ----------
    .. [1] http://www.multipie.org/
    .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 49
    validate_input(pcloud, n_expected_points)

    lbrow_indices = np.arange(0, 5)
    rbrow_indices = np.arange(5, 10)
    upper_nose_indices = np.arange(10, 14)
    lower_nose_indices = np.arange(14, 19)
    leye_indices = np.arange(19, 25)
    reye_indices = np.arange(25, 31)
    outer_mouth_indices = np.arange(31, 43)
    inner_mouth_indices = np.hstack((31, np.arange(43, 46),
                                     37, np.arange(46, 49)))

    lbrow_connectivity = connectivity_from_array(lbrow_indices)
    rbrow_connectivity = connectivity_from_array(rbrow_indices)
    nose_connectivity = np.vstack([
        connectivity_from_array(upper_nose_indices),
        connectivity_from_array(lower_nose_indices)])
    leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
    reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
    mouth_connectivity = np.vstack([
        connectivity_from_array(outer_mouth_indices, close_loop=True),
        connectivity_from_array(inner_mouth_indices, close_loop=True)])

    all_connectivity = np.vstack([
        lbrow_connectivity, rbrow_connectivity, nose_connectivity,
        leye_connectivity, reye_connectivity, mouth_connectivity])

    # Ignore the two inner mouth points
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['left_eyebrow'] = lbrow_indices
    mapping['right_eyebrow'] = rbrow_indices
    mapping['nose'] = np.hstack([upper_nose_indices, lower_nose_indices])
    mapping['left_eye'] = leye_indices
    mapping['right_eye'] = reye_indices
    mapping['mouth'] = np.hstack([outer_mouth_indices, inner_mouth_indices])

    return new_pcloud, mapping
开发者ID:kritsong,项目名称:menpo,代码行数:60,代码来源:face.py

示例4: eye_ibug_open_38_to_eye_ibug_open_38

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def eye_ibug_open_38_to_eye_ibug_open_38(pcloud):
    r"""
    Apply the IBUG 38-point open eye semantic labels.

    The semantic labels applied are as follows:

      - upper_eyelid
      - lower_eyelid
      - iris
      - pupil
      - sclera
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 38
    validate_input(pcloud, n_expected_points)

    upper_el_indices, upper_el_connectivity = _build_upper_eyelid()

    iris_range = (22, 30)
    pupil_range = (30, 38)
    sclera_top = np.arange(12, 17)
    sclera_bottom = np.arange(17, 22)
    sclera_indices = np.hstack((0, sclera_top, 6, sclera_bottom))
    lower_el_top = np.arange(17, 22)
    lower_el_bottom = np.arange(7, 12)
    lower_el_indices = np.hstack((6, lower_el_top, 0, lower_el_bottom))

    iris_connectivity = connectivity_from_range(iris_range, close_loop=True)
    pupil_connectivity = connectivity_from_range(pupil_range, close_loop=True)

    sclera_connectivity = list(zip(sclera_top, sclera_top[1:]))
    sclera_connectivity += [(0, 21)]
    sclera_connectivity += list(zip(sclera_bottom, sclera_bottom[1:]))
    sclera_connectivity += [(6, 17)]

    lower_el_connectivity = list(zip(lower_el_top, lower_el_top[1:]))
    lower_el_connectivity += [(6, 7)]
    lower_el_connectivity += list(zip(lower_el_bottom, lower_el_bottom[1:]))
    lower_el_connectivity += [(11, 0)]

    all_connectivity = np.asarray(upper_el_connectivity +
                                  lower_el_connectivity +
                                  iris_connectivity.tolist() +
                                  pupil_connectivity.tolist() +
                                  sclera_connectivity)
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['upper_eyelid'] = upper_el_indices
    mapping['lower_eyelid'] = lower_el_indices
    mapping['pupil'] = np.arange(*pupil_range)
    mapping['iris'] = np.arange(*iris_range)
    mapping['sclera'] = sclera_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:59,代码来源:face.py

示例5: hand_ibug_39_to_hand_ibug_39

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def hand_ibug_39_to_hand_ibug_39(pcloud):
    r"""
    Apply the IBUG 39-point semantic labels.

    The semantic labels applied are as follows:

      - thumb
      - index
      - middle
      - ring
      - pinky
      - palm
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 39
    validate_input(pcloud, n_expected_points)

    thumb_indices = np.arange(0, 5)
    index_indices = np.arange(5, 12)
    middle_indices = np.arange(12, 19)
    ring_indices = np.arange(19, 26)
    pinky_indices = np.arange(26, 33)
    palm_indices = np.hstack((np.array([32, 25, 18, 11, 33, 34, 4]),
                              np.arange(35, 39)))

    thumb_connectivity = connectivity_from_array(thumb_indices,
                                                 close_loop=False)
    index_connectivity = connectivity_from_array(index_indices,
                                                 close_loop=False)
    middle_connectivity = connectivity_from_array(middle_indices,
                                                  close_loop=False)
    ring_connectivity = connectivity_from_array(ring_indices,
                                                close_loop=False)
    pinky_connectivity = connectivity_from_array(pinky_indices,
                                                 close_loop=False)
    palm_connectivity = connectivity_from_array(palm_indices,
                                                close_loop=True)

    all_connectivity = np.vstack([thumb_connectivity, index_connectivity,
                                  middle_connectivity, ring_connectivity,
                                  pinky_connectivity, palm_connectivity])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['thumb'] = thumb_indices
    mapping['index'] = index_indices
    mapping['middle'] = middle_indices
    mapping['ring'] = ring_indices
    mapping['pinky'] = pinky_indices
    mapping['palm'] = palm_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:57,代码来源:hand.py

示例6: car_streetscene_20_to_car_streetscene_view_1_14

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def car_streetscene_20_to_car_streetscene_view_1_14(pcloud):
    """
    Apply the 14-point semantic labels of "view 1" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - front
      - bonnet
      - windshield
      - left_side

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    front_indices = np.array([0, 1, 3, 2])
    bonnet_indices = np.array([2, 3, 5, 4])
    windshield_indices = np.array([4, 5, 7, 6])
    left_side_indices = np.array([0, 2, 4, 6, 8, 9, 10, 11, 13, 12])

    front_connectivity = connectivity_from_array(front_indices,
                                                 close_loop=True)
    bonnet_connectivity = connectivity_from_array(bonnet_indices,
                                                  close_loop=True)
    windshield_connectivity = connectivity_from_array(windshield_indices,
                                                      close_loop=True)
    left_side_connectivity = connectivity_from_array(left_side_indices,
                                                     close_loop=True)

    all_connectivity = np.vstack([
        front_connectivity, bonnet_connectivity, windshield_connectivity,
        left_side_connectivity
    ])

    ind = np.hstack((np.arange(9), np.array([10, 12, 14, 16, 18])))
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['front'] = front_indices
    mapping['bonnet'] = bonnet_indices
    mapping['windshield'] = windshield_indices
    mapping['left_side'] = left_side_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:53,代码来源:car.py

示例7: test_init_from_edges

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def test_init_from_edges():
    g = PointDirectedGraph.init_from_edges(
        points, np.array([[1, 0], [2, 0], [1, 2], [2, 1], [1, 3], [2, 4],
                          [3, 4], [3, 5]]))
    assert (pg_directed.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointUndirectedGraph.init_from_edges(
        points, np.array([[0, 1], [0, 2], [1, 2], [1, 3], [2, 4], [3, 4],
                          [3, 5]]))
    assert (pg_undirected.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointUndirectedGraph.init_from_edges(
        points, np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
                          [1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
                          [3, 5], [5, 3]]))
    assert (pg_undirected.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointTree.init_from_edges(
        points2, np.array([[0, 1], [0, 2], [1, 3], [1, 4], [2, 5], [3, 6],
                           [4, 7], [5, 8]]), root_vertex=0)
    assert (pg_tree.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointUndirectedGraph.init_from_edges(
        points, np.array([[0, 2], [2, 4], [3, 4]]))
    assert (pg_isolated.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointDirectedGraph.init_from_edges(point, np.array([]))
    assert (pg_single.adjacency_matrix - g.adjacency_matrix).nnz == 0
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:25,代码来源:test_graph.py

示例8: pose_lsp_14_to_pose_lsp_14

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def pose_lsp_14_to_pose_lsp_14(pcloud):
    r"""
    Apply the lsp 14-point semantic labels.

    The semantic labels applied are as follows:

      - left_leg
      - right_leg
      - left_arm
      - right_arm
      - head

    References
    ----------
    .. [1] http://www.comp.leeds.ac.uk/mat4saj/lsp.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 14
    validate_input(pcloud, n_expected_points)

    left_leg_indices = np.arange(0, 3)
    right_leg_indices = np.arange(3, 6)
    left_arm_indices = np.arange(6, 9)
    right_arm_indices = np.arange(9, 12)
    head_indices = np.arange(12, 14)

    left_leg_connectivity = connectivity_from_array(left_leg_indices)
    right_leg_connectivity = connectivity_from_array(right_leg_indices)
    left_arm_connectivity = connectivity_from_array(left_arm_indices)
    right_arm_connectivity = connectivity_from_array(right_arm_indices)
    head_connectivity = connectivity_from_array(head_indices)

    all_connectivity = np.vstack([
        left_leg_connectivity, right_leg_connectivity,
        left_arm_connectivity, right_arm_connectivity,
        head_connectivity
    ])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['left_leg'] = left_leg_indices
    mapping['right_leg'] = right_leg_indices
    mapping['left_arm'] = left_arm_indices
    mapping['right_arm'] = right_arm_indices
    mapping['head'] = head_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:52,代码来源:pose.py

示例9: car_streetscene_20_to_car_streetscene_view_6_14

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def car_streetscene_20_to_car_streetscene_view_6_14(pcloud):
    r"""
    Apply the 14-point semantic labels of "view 6" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - right_side
      - rear_windshield
      - trunk
      - rear

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    right_side_indices = np.array([0, 1, 2, 3, 5, 7, 9, 11, 13, 12])
    rear_windshield_indices = np.array([4, 5, 7, 6])
    trunk_indices = np.array([6, 7, 9, 8])
    rear_indices = np.array([8, 9, 11, 10])

    right_side_connectivity = connectivity_from_array(right_side_indices,
                                                      close_loop=True)
    rear_windshield_connectivity = connectivity_from_array(
        rear_windshield_indices, close_loop=True)
    trunk_connectivity = connectivity_from_array(trunk_indices, close_loop=True)
    rear_connectivity = connectivity_from_array(rear_indices, close_loop=True)

    all_connectivity = np.vstack([
        right_side_connectivity, rear_windshield_connectivity,
        trunk_connectivity, rear_connectivity
    ])

    ind = np.array([1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19])
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['right_side'] = right_side_indices
    mapping['rear_windshield'] = rear_windshield_indices
    mapping['trunk'] = trunk_indices
    mapping['rear'] = rear_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:51,代码来源:car.py

示例10: pcloud_and_lgroup_from_ranges

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def pcloud_and_lgroup_from_ranges(pointcloud, labels_to_ranges):
    """
    Label the given pointcloud according to the given ordered dictionary
    of labels to ranges. This assumes that you can semantically label the group
    by using ranges in to the existing points e.g ::

        labels_to_ranges = {'jaw': (0, 17, False)}

    The third element of the range tuple is whether the range is a closed loop
    or not. For example, for an eye landmark this would be ``True``, as you
    do want to create a closed loop for an eye.

    Parameters
    ----------
    pointcloud : :map:`PointCloud`
        The pointcloud to apply semantic labels to.
    labels_to_ranges : `ordereddict` {`str` -> (`int`, `int`, `bool`)}
        Ordered dictionary of string labels to range tuples.

    Returns
    -------
    new_pcloud : :map:`PointCloud`
        New pointcloud with specific connectivity information applied.
    mapping : `ordereddict` {`str` -> `int ndarray`}
        For each label, the indices in to the pointcloud that belong to the
        label.
    """
    from menpo.shape import PointUndirectedGraph

    mapping = OrderedDict()
    all_connectivity = []
    for label, tup in labels_to_ranges.items():
        range_tuple = tup[:-1]
        close_loop = tup[-1]

        connectivity = connectivity_from_range(range_tuple,
                                               close_loop=close_loop)
        all_connectivity.append(connectivity)
        mapping[label] = np.arange(*range_tuple)
    all_connectivity = np.vstack(all_connectivity)

    new_pcloud = PointUndirectedGraph.init_from_edges(pointcloud.points,
                                                      all_connectivity)

    return new_pcloud, mapping
开发者ID:kritsong,项目名称:menpo,代码行数:47,代码来源:base.py

示例11: _parse_ljson_v2

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def _parse_ljson_v2(lms_dict):
    labels_to_mask = OrderedDict()  # masks into the full pointcloud per label

    points = _ljson_parse_null_values(lms_dict['landmarks']['points'])
    connectivity = lms_dict['landmarks'].get('connectivity')

    # Don't create a PointUndirectedGraph with no connectivity
    if connectivity is None or len(connectivity) == 0:
        pcloud = PointCloud(points)
    else:
        pcloud = PointUndirectedGraph.init_from_edges(points, connectivity)

    for label in lms_dict['labels']:
        mask = np.zeros(pcloud.n_points, dtype=np.bool)
        mask[label['mask']] = True
        labels_to_mask[label['label']] = mask

    return pcloud, labels_to_mask
开发者ID:JeanKossaifi,项目名称:menpo,代码行数:20,代码来源:landmark.py

示例12: face_ibug_68_to_face_ibug_65

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def face_ibug_68_to_face_ibug_65(pcloud):
    r"""
    Apply the IBUG 68 point semantic labels, but ignore the 3 points that are
    coincident for a closed mouth (bottom of the inner mouth).

    The semantic labels applied are as follows:

      - jaw
      - left_eyebrow
      - right_eyebrow
      - nose
      - left_eye
      - right_eye
      - mouth

    References
    ----------
    .. [1] http://www.multipie.org/
    .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
    """
    from menpo.shape import PointUndirectedGraph

    # Apply face_ibug_68_to_face_ibug_68
    new_pcloud, mapping = face_ibug_68_to_face_ibug_68(pcloud,
                                                       return_mapping=True)

    # The coincident points are considered the final 3 landmarks (bottom of
    # the inner mouth points). We remove all the edges for the inner mouth
    # which are the last 8.
    edges = new_pcloud.edges[:-8]
    # Re-add the inner mouth without the bottom 3 points
    edges = np.vstack([edges,
                       connectivity_from_range((60, 65), close_loop=True)])

    new_pcloud = PointUndirectedGraph.init_from_edges(
        new_pcloud.points[:-3], edges)

    # Luckily, OrderedDict maintains the original ordering despite updates
    outer_mouth_indices = np.arange(48, 60)
    inner_mouth_indices = np.arange(60, 65)
    mapping['mouth'] = np.hstack([outer_mouth_indices, inner_mouth_indices])

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:45,代码来源:face.py

示例13: _parse_ljson_v1

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def _parse_ljson_v1(lms_dict):
    from menpo.base import MenpoDeprecationWarning

    warnings.warn(
        "LJSON v1 is deprecated. export_landmark_file{s}() will "
        "only save out LJSON v2 files. Please convert all LJSON "
        "files to v2 by importing into Menpo and re-exporting to "
        "overwrite the files.",
        MenpoDeprecationWarning,
    )
    all_points = []
    labels = []  # label per group
    labels_slices = []  # slices into the full pointcloud per label
    offset = 0
    connectivity = []
    for group in lms_dict["groups"]:
        lms = group["landmarks"]
        labels.append(group["label"])
        labels_slices.append(slice(offset, len(lms) + offset))
        # Create the connectivity if it exists
        conn = group.get("connectivity", [])
        if conn:
            # Offset relative connectivity according to the current index
            conn = offset + np.asarray(conn)
            connectivity += conn.tolist()
        for p in lms:
            all_points.append(p["point"])
        offset += len(lms)

    # Don't create a PointUndirectedGraph with no connectivity
    points = _ljson_parse_null_values(all_points)
    if len(connectivity) == 0:
        pcloud = PointCloud(points)
    else:
        pcloud = PointUndirectedGraph.init_from_edges(points, connectivity)
    labels_to_masks = OrderedDict()
    # go through each label and build the appropriate boolean array
    for label, l_slice in zip(labels, labels_slices):
        mask = np.zeros(pcloud.n_points, dtype=np.bool)
        mask[l_slice] = True
        labels_to_masks[label] = mask
    return pcloud, labels_to_masks
开发者ID:luukhoavn,项目名称:menpo,代码行数:44,代码来源:landmark.py

示例14: face_ibug_68_to_face_ibug_68

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def face_ibug_68_to_face_ibug_68(pcloud):
    r"""
    Apply the IBUG 68-point semantic labels.

    The semantic labels are as follows:

      - jaw
      - left_eyebrow
      - right_eyebrow
      - nose
      - left_eye
      - right_eye
      - mouth

    References
    ----------
    .. [1] http://www.multipie.org/
    .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 68
    validate_input(pcloud, n_expected_points)

    jaw_indices = np.arange(0, 17)
    lbrow_indices = np.arange(17, 22)
    rbrow_indices = np.arange(22, 27)
    upper_nose_indices = np.arange(27, 31)
    lower_nose_indices = np.arange(31, 36)
    leye_indices = np.arange(36, 42)
    reye_indices = np.arange(42, 48)
    outer_mouth_indices = np.arange(48, 60)
    inner_mouth_indices = np.arange(60, 68)

    jaw_connectivity = connectivity_from_array(jaw_indices)
    lbrow_connectivity = connectivity_from_array(lbrow_indices)
    rbrow_connectivity = connectivity_from_array(rbrow_indices)
    nose_connectivity = np.vstack([
        connectivity_from_array(upper_nose_indices),
        connectivity_from_array(lower_nose_indices)])
    leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
    reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
    mouth_connectivity = np.vstack([
        connectivity_from_array(outer_mouth_indices, close_loop=True),
        connectivity_from_array(inner_mouth_indices, close_loop=True)])

    all_connectivity = np.vstack([
        jaw_connectivity, lbrow_connectivity, rbrow_connectivity,
        nose_connectivity, leye_connectivity, reye_connectivity,
        mouth_connectivity
    ])

    new_pcloud = PointUndirectedGraph.init_from_edges(
        pcloud.points, all_connectivity)

    mapping = OrderedDict()
    mapping['jaw'] = jaw_indices
    mapping['left_eyebrow'] = lbrow_indices
    mapping['right_eyebrow'] = rbrow_indices
    mapping['nose'] = np.hstack((upper_nose_indices, lower_nose_indices))
    mapping['left_eye'] = leye_indices
    mapping['right_eye'] = reye_indices
    mapping['mouth'] = np.hstack((outer_mouth_indices, inner_mouth_indices))

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:67,代码来源:face.py

示例15: pose_human36M_32_to_pose_human36M_17

# 需要导入模块: from menpo.shape import PointUndirectedGraph [as 别名]
# 或者: from menpo.shape.PointUndirectedGraph import init_from_edges [as 别名]
def pose_human36M_32_to_pose_human36M_17(pcloud):
    r"""
    Apply the human3.6M 17-point semantic labels (based on the
    original semantic labels of Human3.6 but removing the annotations
    corresponding to duplicate points, soles and palms), originally 32-points.

    The semantic labels applied are as follows:

      - pelvis
      - right_leg
      - left_leg
      - spine
      - head
      - left_arm
      - right_arm
      - torso

    References
    ----------
    .. [1] http://vision.imar.ro/human3.6m/
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 32
    validate_input(pcloud, n_expected_points)

    pelvis_indices = np.array([1, 0, 4])
    right_leg_indices = np.arange(1, 4)
    left_leg_indices = np.arange(4, 7)
    spine_indices = np.array([0, 7, 8])
    head_indices = np.array([8, 9, 10])
    left_arm_indices = np.array([8, 11, 12, 13])
    right_arm_indices = np.array([8, 14, 15, 16])
    torso_indices = np.array([0, 1, 14, 8, 11, 4])

    pelvis_connectivity = connectivity_from_array(pelvis_indices)
    right_leg_connectivity = connectivity_from_array(right_leg_indices)
    left_leg_connectivity = connectivity_from_array(left_leg_indices)
    spine_connectivity = connectivity_from_array(spine_indices)
    head_connectivity = connectivity_from_array(head_indices)
    left_arm_connectivity = connectivity_from_array(left_arm_indices)
    right_arm_connectivity = connectivity_from_array(right_arm_indices)
    torso_connectivity = connectivity_from_array(torso_indices,
                                                 close_loop=True)

    all_connectivity = np.vstack([
        pelvis_connectivity, right_leg_connectivity, left_leg_connectivity,
        spine_connectivity, head_connectivity, left_arm_connectivity,
        right_arm_connectivity, torso_connectivity
    ])

    # Ignore duplicate points, sole and palms
    ind = np.hstack([np.arange(0, 4), np.arange(6, 9), np.arange(12, 16),
                     np.arange(17, 20), np.arange(25, 28)])
    new_pcloud = PointUndirectedGraph.init_from_edges(
        pcloud.points[ind], all_connectivity)

    mapping = OrderedDict()
    mapping['pelvis'] = pelvis_indices
    mapping['right_leg'] = right_leg_indices
    mapping['left_leg'] = left_leg_indices
    mapping['spine'] = spine_indices
    mapping['head'] = head_indices
    mapping['left_arm'] = left_arm_indices
    mapping['right_arm'] = right_arm_indices
    mapping['torso'] = torso_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:70,代码来源:pose.py


注:本文中的menpo.shape.PointUndirectedGraph.init_from_edges方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。