本文整理汇总了Python中menpo.shape.PointUndirectedGraph类的典型用法代码示例。如果您正苦于以下问题:Python PointUndirectedGraph类的具体用法?Python PointUndirectedGraph怎么用?Python PointUndirectedGraph使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了PointUndirectedGraph类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: eye_ibug_close_17_to_eye_ibug_close_17
def eye_ibug_close_17_to_eye_ibug_close_17(pcloud):
r"""
Apply the IBUG 17-point close eye semantic labels.
The semantic labels applied are as follows:
- upper_eyelid
- lower_eyelid
"""
from menpo.shape import PointUndirectedGraph
n_expected_points = 17
validate_input(pcloud, n_expected_points)
upper_indices, upper_connectivity = _build_upper_eyelid()
middle_indices = np.arange(12, 17)
bottom_indices = np.arange(6, 12)
lower_indices = np.hstack((bottom_indices, 0, middle_indices))
lower_connectivity = list(zip(bottom_indices, bottom_indices[1:]))
lower_connectivity += [(0, 12)]
lower_connectivity += list(zip(middle_indices, middle_indices[1:]))
lower_connectivity += [(11, 0)]
all_connectivity = np.asarray(upper_connectivity + lower_connectivity)
new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
all_connectivity)
mapping = OrderedDict()
mapping['upper_eyelid'] = upper_indices
mapping['lower_eyelid'] = lower_indices
return new_pcloud, mapping
示例2: car_streetscene_20_to_car_streetscene_view_5_10
def car_streetscene_20_to_car_streetscene_view_5_10(pcloud):
r"""
Apply the 10-point semantic labels of "view 5" from the MIT Street Scene
Car dataset (originally a 20-point markup).
The semantic labels applied are as follows:
- right_side
References
----------
.. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
"""
from menpo.shape import PointUndirectedGraph
n_expected_points = 20
validate_input(pcloud, n_expected_points)
right_side_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 9, 8])
right_side_connectivity = connectivity_from_array(right_side_indices,
close_loop=True)
all_connectivity = right_side_connectivity
ind = np.array([1, 3, 5, 7, 9, 11, 13, 15, 17, 19])
new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
all_connectivity)
mapping = OrderedDict()
mapping['right_side'] = right_side_indices
return new_pcloud, mapping
示例3: face_ibug_49_to_face_ibug_49
def face_ibug_49_to_face_ibug_49(pcloud):
r"""
Apply the IBUG 49-point semantic labels.
The semantic labels applied are as follows:
- left_eyebrow
- right_eyebrow
- nose
- left_eye
- right_eye
- mouth
References
----------
.. [1] http://www.multipie.org/
.. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
"""
from menpo.shape import PointUndirectedGraph
n_expected_points = 49
validate_input(pcloud, n_expected_points)
lbrow_indices = np.arange(0, 5)
rbrow_indices = np.arange(5, 10)
upper_nose_indices = np.arange(10, 14)
lower_nose_indices = np.arange(14, 19)
leye_indices = np.arange(19, 25)
reye_indices = np.arange(25, 31)
outer_mouth_indices = np.arange(31, 43)
inner_mouth_indices = np.hstack((31, np.arange(43, 46),
37, np.arange(46, 49)))
lbrow_connectivity = connectivity_from_array(lbrow_indices)
rbrow_connectivity = connectivity_from_array(rbrow_indices)
nose_connectivity = np.vstack([
connectivity_from_array(upper_nose_indices),
connectivity_from_array(lower_nose_indices)])
leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
mouth_connectivity = np.vstack([
connectivity_from_array(outer_mouth_indices, close_loop=True),
connectivity_from_array(inner_mouth_indices, close_loop=True)])
all_connectivity = np.vstack([
lbrow_connectivity, rbrow_connectivity, nose_connectivity,
leye_connectivity, reye_connectivity, mouth_connectivity])
# Ignore the two inner mouth points
new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
all_connectivity)
mapping = OrderedDict()
mapping['left_eyebrow'] = lbrow_indices
mapping['right_eyebrow'] = rbrow_indices
mapping['nose'] = np.hstack([upper_nose_indices, lower_nose_indices])
mapping['left_eye'] = leye_indices
mapping['right_eye'] = reye_indices
mapping['mouth'] = np.hstack([outer_mouth_indices, inner_mouth_indices])
return new_pcloud, mapping
示例4: eye_ibug_open_38_to_eye_ibug_open_38
def eye_ibug_open_38_to_eye_ibug_open_38(pcloud):
r"""
Apply the IBUG 38-point open eye semantic labels.
The semantic labels applied are as follows:
- upper_eyelid
- lower_eyelid
- iris
- pupil
- sclera
"""
from menpo.shape import PointUndirectedGraph
n_expected_points = 38
validate_input(pcloud, n_expected_points)
upper_el_indices, upper_el_connectivity = _build_upper_eyelid()
iris_range = (22, 30)
pupil_range = (30, 38)
sclera_top = np.arange(12, 17)
sclera_bottom = np.arange(17, 22)
sclera_indices = np.hstack((0, sclera_top, 6, sclera_bottom))
lower_el_top = np.arange(17, 22)
lower_el_bottom = np.arange(7, 12)
lower_el_indices = np.hstack((6, lower_el_top, 0, lower_el_bottom))
iris_connectivity = connectivity_from_range(iris_range, close_loop=True)
pupil_connectivity = connectivity_from_range(pupil_range, close_loop=True)
sclera_connectivity = list(zip(sclera_top, sclera_top[1:]))
sclera_connectivity += [(0, 21)]
sclera_connectivity += list(zip(sclera_bottom, sclera_bottom[1:]))
sclera_connectivity += [(6, 17)]
lower_el_connectivity = list(zip(lower_el_top, lower_el_top[1:]))
lower_el_connectivity += [(6, 7)]
lower_el_connectivity += list(zip(lower_el_bottom, lower_el_bottom[1:]))
lower_el_connectivity += [(11, 0)]
all_connectivity = np.asarray(upper_el_connectivity +
lower_el_connectivity +
iris_connectivity.tolist() +
pupil_connectivity.tolist() +
sclera_connectivity)
new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
all_connectivity)
mapping = OrderedDict()
mapping['upper_eyelid'] = upper_el_indices
mapping['lower_eyelid'] = lower_el_indices
mapping['pupil'] = np.arange(*pupil_range)
mapping['iris'] = np.arange(*iris_range)
mapping['sclera'] = sclera_indices
return new_pcloud, mapping
示例5: test_init_2d_grid
def test_init_2d_grid():
g = PointTree.init_2d_grid((5, 5))
assert g.adjacency_matrix.nnz == 24
assert g.n_points == 25
g = PointUndirectedGraph.init_2d_grid((5, 5))
assert g.adjacency_matrix.nnz == 80
assert g.n_points == 25
g = PointDirectedGraph.init_2d_grid((5, 5))
assert g.adjacency_matrix.nnz == 80
assert g.n_points == 25
示例6: hand_ibug_39_to_hand_ibug_39
def hand_ibug_39_to_hand_ibug_39(pcloud):
r"""
Apply the IBUG 39-point semantic labels.
The semantic labels applied are as follows:
- thumb
- index
- middle
- ring
- pinky
- palm
"""
from menpo.shape import PointUndirectedGraph
n_expected_points = 39
validate_input(pcloud, n_expected_points)
thumb_indices = np.arange(0, 5)
index_indices = np.arange(5, 12)
middle_indices = np.arange(12, 19)
ring_indices = np.arange(19, 26)
pinky_indices = np.arange(26, 33)
palm_indices = np.hstack((np.array([32, 25, 18, 11, 33, 34, 4]),
np.arange(35, 39)))
thumb_connectivity = connectivity_from_array(thumb_indices,
close_loop=False)
index_connectivity = connectivity_from_array(index_indices,
close_loop=False)
middle_connectivity = connectivity_from_array(middle_indices,
close_loop=False)
ring_connectivity = connectivity_from_array(ring_indices,
close_loop=False)
pinky_connectivity = connectivity_from_array(pinky_indices,
close_loop=False)
palm_connectivity = connectivity_from_array(palm_indices,
close_loop=True)
all_connectivity = np.vstack([thumb_connectivity, index_connectivity,
middle_connectivity, ring_connectivity,
pinky_connectivity, palm_connectivity])
new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
all_connectivity)
mapping = OrderedDict()
mapping['thumb'] = thumb_indices
mapping['index'] = index_indices
mapping['middle'] = middle_indices
mapping['ring'] = ring_indices
mapping['pinky'] = pinky_indices
mapping['palm'] = palm_indices
return new_pcloud, mapping
示例7: __init__
def __init__(self, points, adjacency_matrix, labels_to_masks, copy=True,
skip_checks=False):
PointUndirectedGraph.__init__(self, points, adjacency_matrix, copy=copy,
skip_checks=skip_checks)
if not labels_to_masks:
raise ValueError('Labelled point graphs are designed to be '
'immutable. Empty label sets are not permitted.')
if np.vstack(labels_to_masks.values()).shape[1] != points.shape[0]:
raise ValueError('Each mask must have the same number of points '
'as the given points.')
if not isinstance(labels_to_masks, OrderedDict):
raise ValueError('Must provide an OrderedDict to maintain the '
'semantic meaning of the labels.')
# Another sanity check
self._labels_to_masks = labels_to_masks
self._verify_all_labels_masked()
if copy:
self._labels_to_masks = OrderedDict([(l, m.copy()) for l, m in
labels_to_masks.items()])
示例8: car_streetscene_20_to_car_streetscene_view_1_14
def car_streetscene_20_to_car_streetscene_view_1_14(pcloud):
"""
Apply the 14-point semantic labels of "view 1" from the MIT Street Scene
Car dataset (originally a 20-point markup).
The semantic labels applied are as follows:
- front
- bonnet
- windshield
- left_side
References
----------
.. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
"""
from menpo.shape import PointUndirectedGraph
n_expected_points = 20
validate_input(pcloud, n_expected_points)
front_indices = np.array([0, 1, 3, 2])
bonnet_indices = np.array([2, 3, 5, 4])
windshield_indices = np.array([4, 5, 7, 6])
left_side_indices = np.array([0, 2, 4, 6, 8, 9, 10, 11, 13, 12])
front_connectivity = connectivity_from_array(front_indices,
close_loop=True)
bonnet_connectivity = connectivity_from_array(bonnet_indices,
close_loop=True)
windshield_connectivity = connectivity_from_array(windshield_indices,
close_loop=True)
left_side_connectivity = connectivity_from_array(left_side_indices,
close_loop=True)
all_connectivity = np.vstack([
front_connectivity, bonnet_connectivity, windshield_connectivity,
left_side_connectivity
])
ind = np.hstack((np.arange(9), np.array([10, 12, 14, 16, 18])))
new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
all_connectivity)
mapping = OrderedDict()
mapping['front'] = front_indices
mapping['bonnet'] = bonnet_indices
mapping['windshield'] = windshield_indices
mapping['left_side'] = left_side_indices
return new_pcloud, mapping
示例9: pose_lsp_14_to_pose_lsp_14
def pose_lsp_14_to_pose_lsp_14(pcloud):
r"""
Apply the lsp 14-point semantic labels.
The semantic labels applied are as follows:
- left_leg
- right_leg
- left_arm
- right_arm
- head
References
----------
.. [1] http://www.comp.leeds.ac.uk/mat4saj/lsp.html
"""
from menpo.shape import PointUndirectedGraph
n_expected_points = 14
validate_input(pcloud, n_expected_points)
left_leg_indices = np.arange(0, 3)
right_leg_indices = np.arange(3, 6)
left_arm_indices = np.arange(6, 9)
right_arm_indices = np.arange(9, 12)
head_indices = np.arange(12, 14)
left_leg_connectivity = connectivity_from_array(left_leg_indices)
right_leg_connectivity = connectivity_from_array(right_leg_indices)
left_arm_connectivity = connectivity_from_array(left_arm_indices)
right_arm_connectivity = connectivity_from_array(right_arm_indices)
head_connectivity = connectivity_from_array(head_indices)
all_connectivity = np.vstack([
left_leg_connectivity, right_leg_connectivity,
left_arm_connectivity, right_arm_connectivity,
head_connectivity
])
new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
all_connectivity)
mapping = OrderedDict()
mapping['left_leg'] = left_leg_indices
mapping['right_leg'] = right_leg_indices
mapping['left_arm'] = left_arm_indices
mapping['right_arm'] = right_arm_indices
mapping['head'] = head_indices
return new_pcloud, mapping
示例10: test_init_from_edges
def test_init_from_edges():
g = PointDirectedGraph.init_from_edges(
points, np.array([[1, 0], [2, 0], [1, 2], [2, 1], [1, 3], [2, 4],
[3, 4], [3, 5]]))
assert (pg_directed.adjacency_matrix - g.adjacency_matrix).nnz == 0
g = PointUndirectedGraph.init_from_edges(
points, np.array([[0, 1], [0, 2], [1, 2], [1, 3], [2, 4], [3, 4],
[3, 5]]))
assert (pg_undirected.adjacency_matrix - g.adjacency_matrix).nnz == 0
g = PointUndirectedGraph.init_from_edges(
points, np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
[1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
[3, 5], [5, 3]]))
assert (pg_undirected.adjacency_matrix - g.adjacency_matrix).nnz == 0
g = PointTree.init_from_edges(
points2, np.array([[0, 1], [0, 2], [1, 3], [1, 4], [2, 5], [3, 6],
[4, 7], [5, 8]]), root_vertex=0)
assert (pg_tree.adjacency_matrix - g.adjacency_matrix).nnz == 0
g = PointUndirectedGraph.init_from_edges(
points, np.array([[0, 2], [2, 4], [3, 4]]))
assert (pg_isolated.adjacency_matrix - g.adjacency_matrix).nnz == 0
g = PointDirectedGraph.init_from_edges(point, np.array([]))
assert (pg_single.adjacency_matrix - g.adjacency_matrix).nnz == 0
示例11: car_streetscene_20_to_car_streetscene_view_6_14
def car_streetscene_20_to_car_streetscene_view_6_14(pcloud):
r"""
Apply the 14-point semantic labels of "view 6" from the MIT Street Scene
Car dataset (originally a 20-point markup).
The semantic labels applied are as follows:
- right_side
- rear_windshield
- trunk
- rear
References
----------
.. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
"""
from menpo.shape import PointUndirectedGraph
n_expected_points = 20
validate_input(pcloud, n_expected_points)
right_side_indices = np.array([0, 1, 2, 3, 5, 7, 9, 11, 13, 12])
rear_windshield_indices = np.array([4, 5, 7, 6])
trunk_indices = np.array([6, 7, 9, 8])
rear_indices = np.array([8, 9, 11, 10])
right_side_connectivity = connectivity_from_array(right_side_indices,
close_loop=True)
rear_windshield_connectivity = connectivity_from_array(
rear_windshield_indices, close_loop=True)
trunk_connectivity = connectivity_from_array(trunk_indices, close_loop=True)
rear_connectivity = connectivity_from_array(rear_indices, close_loop=True)
all_connectivity = np.vstack([
right_side_connectivity, rear_windshield_connectivity,
trunk_connectivity, rear_connectivity
])
ind = np.array([1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19])
new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
all_connectivity)
mapping = OrderedDict()
mapping['right_side'] = right_side_indices
mapping['rear_windshield'] = rear_windshield_indices
mapping['trunk'] = trunk_indices
mapping['rear'] = rear_indices
return new_pcloud, mapping
示例12: test_init_from_depth_image
def test_init_from_depth_image():
fake_z = np.random.uniform(size=(10, 10))
g = PointTree.init_from_depth_image(Image(fake_z))
assert g.n_dims == 3
assert g.root_vertex == 55
assert g.adjacency_matrix.nnz == 99
assert g.n_points == 100
g = PointUndirectedGraph.init_from_depth_image(Image(fake_z))
assert g.n_dims == 3
assert g.adjacency_matrix.nnz == 360
assert g.n_points == 100
g = PointDirectedGraph.init_from_depth_image(Image(fake_z))
assert g.n_dims == 3
assert g.adjacency_matrix.nnz == 360
assert g.n_points == 100
示例13: tojson
def tojson(self):
r"""
Convert this `LabelledPointUndirectedGraph` to a dictionary JSON
representation.
Returns
-------
json : ``dict``
Dictionary conforming to the LJSON v2 specification.
"""
labels = [{'mask': mask.nonzero()[0].tolist(),
'label': label}
for label, mask in self._labels_to_masks.items()]
lms_dict = PointUndirectedGraph.tojson(self)
lms_dict['labels'] = labels
return lms_dict
示例14: pcloud_and_lgroup_from_ranges
def pcloud_and_lgroup_from_ranges(pointcloud, labels_to_ranges):
"""
Label the given pointcloud according to the given ordered dictionary
of labels to ranges. This assumes that you can semantically label the group
by using ranges in to the existing points e.g ::
labels_to_ranges = {'jaw': (0, 17, False)}
The third element of the range tuple is whether the range is a closed loop
or not. For example, for an eye landmark this would be ``True``, as you
do want to create a closed loop for an eye.
Parameters
----------
pointcloud : :map:`PointCloud`
The pointcloud to apply semantic labels to.
labels_to_ranges : `ordereddict` {`str` -> (`int`, `int`, `bool`)}
Ordered dictionary of string labels to range tuples.
Returns
-------
new_pcloud : :map:`PointCloud`
New pointcloud with specific connectivity information applied.
mapping : `ordereddict` {`str` -> `int ndarray`}
For each label, the indices in to the pointcloud that belong to the
label.
"""
from menpo.shape import PointUndirectedGraph
mapping = OrderedDict()
all_connectivity = []
for label, tup in labels_to_ranges.items():
range_tuple = tup[:-1]
close_loop = tup[-1]
connectivity = connectivity_from_range(range_tuple,
close_loop=close_loop)
all_connectivity.append(connectivity)
mapping[label] = np.arange(*range_tuple)
all_connectivity = np.vstack(all_connectivity)
new_pcloud = PointUndirectedGraph.init_from_edges(pointcloud.points,
all_connectivity)
return new_pcloud, mapping
示例15: test_init_from_depth_image_masked
def test_init_from_depth_image_masked():
fake_z = np.random.uniform(size=(10, 10))
mask = np.zeros(fake_z.shape, dtype=np.bool)
mask[2:6, 2:6] = True
im = MaskedImage(fake_z, mask=mask)
g = PointTree.init_from_depth_image(im)
assert g.n_dims == 3
assert g.root_vertex == 0
assert g.adjacency_matrix.nnz == 15
assert g.n_points == 16
g = PointUndirectedGraph.init_from_depth_image(im)
assert g.n_dims == 3
assert g.adjacency_matrix.nnz == 48
assert g.n_points == 16
g = PointDirectedGraph.init_from_depth_image(im)
assert g.n_dims == 3
assert g.adjacency_matrix.nnz == 48
assert g.n_points == 16