本文整理汇总了Python中matplotlib.patches.Polygon.set_linewidth方法的典型用法代码示例。如果您正苦于以下问题:Python Polygon.set_linewidth方法的具体用法?Python Polygon.set_linewidth怎么用?Python Polygon.set_linewidth使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.patches.Polygon
的用法示例。
在下文中一共展示了Polygon.set_linewidth方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from matplotlib.patches import Polygon [as 别名]
# 或者: from matplotlib.patches.Polygon import set_linewidth [as 别名]
def __init__(self, xy, closed=True, plotview=None, **opts):
shape = Polygon(xy, closed, **opts)
if 'linewidth' not in opts:
shape.set_linewidth(1.0)
if 'facecolor' not in opts:
shape.set_facecolor('r')
super(NXpolygon, self).__init__(shape, resize=False, plotview=plotview)
self.shape.set_label('Polygon')
self.polygon = self.shape
示例2: float
# 需要导入模块: from matplotlib.patches import Polygon [as 别名]
# 或者: from matplotlib.patches.Polygon import set_linewidth [as 别名]
# for line in csvfile:
# lon = (float(line[0]) + float(line[2]))/2 + float(line[5])
# lat = (float(line[1]) + float(line[3]))/2 + float(line[6])
# x, y = m(lon, lat)
# name = line[4].replace('\\n', '\n')
# plt.text(x, y, name, horizontalalignment='center', verticalalignment='center', fontsize=int(line[7]))
for lakepoly in m.lakepolygons:
lp = Polygon(lakepoly.boundary, zorder=2)
lp.set_facecolor('0.8')
lp.set_edgecolor('0.8')
lp.set_linewidth(0.1)
ax.add_patch(lp)
# xx, yy = m(-72.0, 26.0)
# plt.text(xx, yy, u'Made by zhyuey', color='yellow')
# plt.title('Map of contiguous United States', fontsize=24)
# # plt.savefig('usa_state_75.png', dpi=75)
# # plt.savefig('usa_state_75.png', dpi=75)
# plt.savefig('usa_state_300.png', dpi=300)
# # plt.savefig('usa_state_600.png', dpi=600)
# m.drawcoastlines(linewidth=0.3)
# m.drawcountries(linewidth=0.3)
示例3: plot_planform
# 需要导入模块: from matplotlib.patches import Polygon [as 别名]
# 或者: from matplotlib.patches.Polygon import set_linewidth [as 别名]
def plot_planform(c_r, c_k, c_t, b_k, b, Lambda_le_1, Lambda_le_2, *args, **kwargs):
fig = plt.subplots(figsize=(9, 9))
# optional arguments
c_mac = kwargs.get('mac', None)
X_le_mac = kwargs.get('X_le_mac', None)
Y_mac = kwargs.get('Y_mac', None)
X_ac = kwargs.get('X_ac', None)
xLineWing = [0, b_k/2, b/2, b/2, b_k/2, 0]
dy_k = (b_k/2)*math.tan(Lambda_le_1)
dy = dy_k + (b/2 - b_k/2)*math.tan(Lambda_le_2)
yLineWing = [
0,
dy_k,
dy,
dy + c_t,
dy_k + c_k,
c_r]
# planform
lineWing, = plt.plot(xLineWing, yLineWing, 'k-')
plt.scatter(xLineWing, yLineWing, marker='o', s=40)
# centerline
centerLine, = plt.plot([0,0], [-0.2*c_r,2.1*c_r], 'b')
centerLine.set_dashes([8, 4, 2, 4])
# c/4 line
pC4r = [0, 0.25*c_r]
pC4k = [b_k/2, dy_k + 0.25*c_k]
pC4t = [b/2, dy + 0.25*c_t]
quarterChordLine, = plt.plot([pC4r[0],pC4k[0],pC4t[0]], [pC4r[1],pC4k[1],pC4t[1]], 'k--')
plt.scatter([pC4r[0],pC4k[0],pC4t[0]], [pC4r[1],pC4k[1],pC4t[1]], marker='o', s=40)
if ('mac' in kwargs) and ('X_le_mac' in kwargs) and ('Y_mac' in kwargs):
c_mac = kwargs['mac']
X_le_mac = kwargs['X_le_mac']
Y_mac = kwargs['Y_mac']
#print(mac)
#print(X_le_mac)
#print(Y_mac)
lineMAC, = plt.plot([Y_mac, Y_mac], [X_le_mac, X_le_mac + c_mac], color="red", linewidth=2.5, linestyle="-")
lineMAC.set_dashes([1000,1]) # HUUUUGE
lineLEMAC, = plt.plot([0,b/2], [X_le_mac,X_le_mac], color="orange", linewidth=1.5, linestyle="-")
lineLEMAC.set_dashes([10,2])
lineTEMAC, = plt.plot([0,b/2], [X_le_mac + c_mac, X_le_mac + c_mac], color="orange", linewidth=1.5, linestyle="-")
lineTEMAC.set_dashes([10,2])
plt.scatter(Y_mac, X_le_mac, marker='o', s=40)
ax = plt.gca() # gca stands for 'get current axis'
ax.annotate(
r'$(Y_{\bar{c}},X_{\mathrm{le},\bar{c}}) = '
+r'( {0:.3}'.format(Y_mac) + r'\,\mathrm{m}'+r',\,{0:.3}'.format(X_le_mac) + r'\,\mathrm{m} )$',
xy=(Y_mac, X_le_mac), xycoords='data',
xytext=(20, 30), textcoords='offset points', fontsize=12,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) #
if ('X_le_r_eq' in kwargs) and ('c_r_eq' in kwargs):
X_le_r_eq = kwargs['X_le_r_eq']
c_r_eq = kwargs['c_r_eq']
vertices = [(0, X_le_r_eq)] + [(b/2, dy)] + [(b/2, dy+c_t)] + [(0, X_le_r_eq + c_r_eq)]
poly = Polygon(vertices, facecolor="yellow", alpha=0.5)
poly.set_edgecolor("brown")
poly.set_linewidth(2)
ax0 = plt.gca() # gca stands for 'get current axis'
ax0.add_patch(poly)
if 'X_ac' in kwargs:
X_ac = kwargs['X_ac']
#print(X_ac)
plt.scatter(0, X_ac, marker='o', s=40)
lineAC, = plt.plot([0,b/2], [X_ac,X_ac], color="brown", linewidth=3.5, linestyle="-")
lineAC.set_dashes([10,2.5,3,2.5])
ax = plt.gca() # gca stands for 'get current axis'
ax.annotate(r'$X_{\mathrm{ac,W}} = '+r'{0:.3}'.format(X_ac)+r'\,\mathrm{m} $',
xy=(b/2, X_ac), xycoords='data',
xytext=(20, 30), textcoords='offset points', fontsize=12,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) #
plt.axis('equal')
# xmajorLocator = MultipleLocator(2.0)
# xmajorFormatter = FormatStrFormatter('%.1f')
# xminorLocator = MultipleLocator(4)
# ax = plt.gca() # gca stands for 'get current axis'
# ax.xaxis.set_major_locator(xmajorLocator)
# ax.xaxis.set_major_formatter(xmajorFormatter)
# # for the minor ticks, use no labels; default NullFormatter
# ax.xaxis.set_minor_locator(xminorLocator)
plt.axis([-0.02*b/2, 1.1*b/2, -0.05*c_r, 1.1*(dy + c_t)])
plt.gca().invert_yaxis()
plt.title('Wing planform', fontsize=16)
plt.xlabel('$y$ (m)', fontsize=16)
plt.ylabel('$X$ (m)', fontsize=16)
# Moving spines
ax = plt.gca() # gca stands for 'get current axis'
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
#.........这里部分代码省略.........