当前位置: 首页>>代码示例>>Python>>正文


Python LinearSegmentedColormap.from_list方法代码示例

本文整理汇总了Python中matplotlib.colors.LinearSegmentedColormap.from_list方法的典型用法代码示例。如果您正苦于以下问题:Python LinearSegmentedColormap.from_list方法的具体用法?Python LinearSegmentedColormap.from_list怎么用?Python LinearSegmentedColormap.from_list使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.colors.LinearSegmentedColormap的用法示例。


在下文中一共展示了LinearSegmentedColormap.from_list方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: cmapFromName

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def cmapFromName(cmapname, ncols=256, bad=None):
    """
        Do we need this?
    """
    if not bad:
        bad = [1.0, 1.0, 1.0, 0.0]

    cmap = mpl.cm.get_cmap('jet', ncols)

    if cmapname is not None:

        if cmapname == 'b2r':
            cmap = mpl.colors.LinearSegmentedColormap('my_colormap',
                                                      cdict, ncols)
        elif cmapname == 'viridis' and StrictVersion(mpl.__version__) < StrictVersion('1.5.0'):
            print("Mpl:", mpl.__version__, " using HB viridis")
            cmap = LinearSegmentedColormap.from_list('viridis', viridis_data[::-1])
        elif cmapname == 'viridis_r':
            print("Using HB viridis_r")
            cmap = LinearSegmentedColormap.from_list('viridis', viridis_data)
        else:
            try:
                cmap = mpl.cm.get_cmap(cmapname, ncols)
            except Exception as e:
                print("Could not retrieve colormap ", cmapname, e)

    cmap.set_bad(bad)
    return cmap
开发者ID:dongxu-cug,项目名称:gimli,代码行数:30,代码来源:colorbar.py

示例2: demo_compositing

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def demo_compositing(im_r, im_g, im_b, im_rgb):
  fig = plt.figure(3)
  grid = ImageGrid(fig, 222,
                  nrows_ncols = (2, 2),
                  axes_pad = 0.1,
                  )

  cm_red = LinearSegmentedColormap.from_list('cm_black_red',
                                             [cm.colors.cnames['black'], cm.colors.cnames['red']]) 
  cm_green = LinearSegmentedColormap.from_list('cm_black_green',
                                               [cm.colors.cnames['black'], cm.colors.cnames['green']])
  cm_blue= LinearSegmentedColormap.from_list('cm_black_blue',
                                             [cm.colors.cnames['black'], cm.colors.cnames['blue']])

  im_grid = [im_r, im_g, im_b, im_rgb]

  color_maps = [cm_red, cm_green, cm_blue, None]

  for i in range(4):
    cmap = color_maps[i]
    grid[i].imshow(im_grid[i], cmap = cmap, interpolation = 'nearest')
# The AxesGrid object work as a list of axes.


  plt.show()
开发者ID:m-b-u,项目名称:vsite-graf,代码行数:27,代码来源:16_rgb.py

示例3: _make_STMView_colormap

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def _make_STMView_colormap(fileName, name='my_cmap'):
    if fileName.endswith('.mat'):
        matFile = _loadmat(_path + fileName)
        for key in matFile:
            if key not in ['__version__', '__header__', '__globals__']:
                return _LSC.from_list(name, matFile[key])
    elif fileName.endswith('.txt'):
        txtFile = _np.loadtxt(_path + fileName)
        return _LSC.from_list(name, txtFile)
开发者ID:harrispirie,项目名称:stmpy,代码行数:11,代码来源:colormap.py

示例4: __init__

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
    def __init__(self):
        aggr1=0.2
        aggr2 = 0.2
        #fitnessCmap=LinearSegmentedColormap.from_list('fitness_map',[(aggr1,1,aggr1),(1,1,aggr1),(1,aggr1,aggr1)])
        fitnessCmap = LinearSegmentedColormap.from_list('fitness_map',[(0, 1-aggr1, 0), (1-aggr1, 1-aggr1, 0), (1-aggr1, 0, 0)])
        #complexityCmap = LinearSegmentedColormap.from_list('complexity_map', [(1,1,1),(aggr2, 1, 1), (aggr2,aggr2,1),(aggr2, aggr2, aggr2)])
        complexityCmap = LinearSegmentedColormap.from_list('complexity_map',[(0.6, 0.6, 0.9),(0, 0, 0.3)])

        self.complexity = complexityCmap#plt.get_cmap("cool")
        self.globalm = fitnessCmap
        self.localm = fitnessCmap#plt.get_cmap("RdYlGn")
开发者ID:Arkantus,项目名称:RFGraph,代码行数:13,代码来源:ColorMaps.py

示例5: newgray

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def newgray():
    """ Modified version of Oranges."""
    oranges = cm.get_cmap("gray", 100)
    array = oranges(np.arange(100))
    array = array[40:]
    cmap = LinearSegmentedColormap.from_list("newgray", array)
    cm.register_cmap(name='newgray', cmap=cmap)
    array = array[::-1]
    cmap = LinearSegmentedColormap.from_list("newgray_r", array)
    cm.register_cmap(name='newgray_r', cmap=cmap)
    return
开发者ID:kadubarbosa,项目名称:hydrakin,代码行数:13,代码来源:newcolorbars.py

示例6: pl_hess_diag

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def pl_hess_diag(
    gs, gs_y1, gs_y2, x_min_cmd, x_max_cmd, y_min_cmd, y_max_cmd, x_ax, y_ax,
        lkl_method, hess_xedges, hess_yedges, hess_x, hess_y, HD):
    """
    Hess diagram of observed minus best match synthetic cluster.
    """
    ax = plt.subplot(gs[gs_y1:gs_y2, 2:4])
    # Set plot limits
    plt.xlim(x_min_cmd, x_max_cmd)
    plt.ylim(y_min_cmd, y_max_cmd)
    # Set axis labels
    plt.xlabel('$' + x_ax + '$', fontsize=18)
    # Set minor ticks
    ax.minorticks_on()
    ax.xaxis.set_major_locator(MultipleLocator(1.0))
    if gs_y1 == 0:
        ax.set_title("Hess diagram (observed - synthetic)", fontsize=10)
    for x_ed in hess_xedges:
        # vertical lines
        ax.axvline(x_ed, linestyle=':', lw=.8, color='k', zorder=1)
    for y_ed in hess_yedges:
        # horizontal lines
        ax.axhline(y_ed, linestyle=':', lw=.8, color='k', zorder=1)
    if HD.any():
        # Add text box.
        if HD.min() < 0:
            plt.scatter(-100., -100., marker='s', lw=0., s=60, c='#0B02F8',
                        label='{}'.format(int(HD.min())))
        if HD.max() > 0:
            plt.scatter(-100., -100., marker='s', lw=0., s=60, c='#FB0605',
                        label='{}'.format(int(HD.max())))
        # Define custom colorbar.
        if HD.min() == 0:
            cmap = LinearSegmentedColormap.from_list(
                'mycmap', [(0, 'white'), (1, 'red')])
        else:
            # Zero point for empty bins which should be colored in white.
            zero_pt = (0. - HD.min()) / float(HD.max() - HD.min())
            N = 256.
            zero_pt0 = np.floor(zero_pt * (N - 1)) / (N - 1)
            zero_pt1 = np.ceil(zero_pt * (N - 1)) / (N - 1)
            cmap = LinearSegmentedColormap.from_list(
                'mycmap', [(0, 'blue'), (zero_pt0, 'white'), (zero_pt1,
                           'white'), (1, 'red')], N=N)
        ax.pcolormesh(hess_x, hess_y, HD, cmap=cmap, vmin=HD.min(),
                      vmax=HD.max(), zorder=1)
        # Legend.
        handles, labels = ax.get_legend_handles_labels()
        leg = ax.legend(
            handles, labels, loc='lower right', scatterpoints=1, ncol=2,
            columnspacing=.2, handletextpad=-.3, fontsize=10)
        leg.get_frame().set_alpha(0.7)
开发者ID:asteca,项目名称:ASteCA,代码行数:54,代码来源:mp_best_fit2.py

示例7: temp_style_file

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def temp_style_file(name):
    """ A context manager for creating an empty style file in the expected path.
    """
    stylelib_path = USER_LIBRARY_PATHS[0]
    if not os.path.exists(stylelib_path):
        os.makedirs(stylelib_path)
    srcname = os.path.abspath(os.path.join(os.path.dirname(__file__),name))
    dstname = os.path.join(stylelib_path, os.path.basename(name))
    if not os.path.exists(srcname):
        raise RuntimeError('Cannot use file at "' + srcname + '". This file does not exist.')
    if os.path.exists(dstname):
        #raise RuntimeError('Cannot create a temporary file at "' + dstname + '". This file exists already.')
        warnings.warn('Overwriting the temporary file at "' + dstname + '".')
    
    #with open(filename, 'w'):
    #    pass
    
    shutil.copy2(srcname, dstname)
    
    
    rgb = [
      (  0./255. ,   0./255. ,   0./255.),     
      (  0./255. , 102./255. ,  51./255.),
      #(114./255. , 121./255. , 126./255.),
      ( 91./255. , 172./255. ,  38./255.),
      (217./255. , 220./255. , 222./255.),
      (255./255. , 255./255. , 255./255.)
      ]

    # create map and register it together with reversed colours
    maps = []
    maps.append(LinearSegmentedColormap.from_list('IPU'  , rgb))
    maps.append(LinearSegmentedColormap.from_list('IPU_r', rgb[::-1]))

    for cmap in maps:
        mplcm.register_cmap(cmap=cmap)
        #self._color_maps[cmap.name] = cmap
    
    yield
    os.remove(dstname)



#print('# styles available:', len(plt.style.available))
#
#with temp_style_file('dummy.mplstyle'):
#    print('# before reload:', len(plt.style.available))
#
#    plt.style.reload_library()
#    print('# after reload:', len(plt.style.available))
开发者ID:IPUdk,项目名称:iputemplates,代码行数:52,代码来源:ipumpl.py

示例8: heatmap

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def heatmap(cea, synchronous=True):
    data = cea.grid.get_heat_data()
    fig, ax = plt.subplots()
    cmap = LinearSegmentedColormap.from_list('my cmap', ['black', 'white'])
    heatmap_plot = ax.imshow(data, interpolation='nearest', cmap=cmap, vmin=0, vmax=1.0)

    def init():
        heatmap_plot.set_data(cea.grid.get_heat_data())
        return heatmap_plot

    def animate(i):
        if i > 2:
            cea.iterate_population() if synchronous else cea.iterate_individual()
        heatmap_plot.set_data(cea.grid.get_heat_data())
        return heatmap

    anim = animation.FuncAnimation(fig, animate, init_func=init, frames=150)

    plt.axis('off')
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=None, hspace=None)

    anim.save('gifs/slash_final.gif', writer='imagemagick')

    plt.show()
开发者ID:gyfis,项目名称:pycea,代码行数:28,代码来源:cea.py

示例9: plot_confusion_matrix

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def plot_confusion_matrix(model_name, conf_matrix, labels, save, cmap, graph_fn='cfm.png'):

    startcolor = '#cccccc'
    midcolor = '#08519c'
    endcolor = '#08306b'

    b_g2 = LinearSegmentedColormap.from_list('B_G2', [startcolor, midcolor, endcolor])

    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(conf_matrix, cmap=b_g2)
    fig.colorbar(cax)
    plt.title('Jeeves Confusion Matrix \n', fontsize=16)
    ax.set_xticklabels([''] + labels, fontsize=13)
    ax.set_yticklabels([''] + labels, fontsize=13)
    ax.xaxis.set_ticks_position('none')
    ax.yaxis.set_ticks_position('none')
    spines_to_remove = ['top', 'right', 'left', 'bottom']
    # for spine in spines_to_remove:
    #     ax.spines[spine].set_visible(False)
    plt.xlabel('Predicted', fontsize=14)
    plt.ylabel('Actual', fontsize=14)
    if save:
        plt.savefig(os.path.join(graph_dir, graph_fn))
    plt.show()
开发者ID:nyghtowl,项目名称:Code_Name_Jeeves,代码行数:27,代码来源:evaluate_model.py

示例10: swap_colors

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def swap_colors(json_file_path):
    '''
    Switches out color ramp in meta.json files.
    Uses custom color ramp if provided and valid; otherwise falls back to nextstrain default colors.
    N.B.: Modifies json in place and writes to original file path.
    '''
    j = json.load(open(json_file_path, 'r'))
    color_options = j['color_options']

    for k,v in color_options.items():
        if 'color_map' in v:
            categories, colors = zip(*v['color_map'])

            ## Use custom colors if provided AND present for all categories in the dataset
            if custom_colors and all([category in custom_colors for category in categories]):
                colors = [ custom_colors[category] for category in categories ]

            ## Expand the color palette if we have too many categories
            elif len(categories) > len(default_colors):
                from matplotlib.colors import LinearSegmentedColormap, to_hex
                from numpy import linspace
                expanded_cmap = LinearSegmentedColormap.from_list('expanded_cmap', default_colors[-1], N=len(categories))
                discrete_colors = [expanded_cmap(i) for i in linspace(0,1,len(categories))]
                colors = [to_hex(c).upper() for c in discrete_colors]

            else: ## Falls back to default nextstrain colors
                colors = default_colors[len(categories)] # based on how many categories are present; keeps original ordering

            j['color_options'][k]['color_map'] = map(list, zip(categories, colors))

    json.dump(j, open(json_file_path, 'w'), indent=1)
开发者ID:blab,项目名称:nextstrain-augur,代码行数:33,代码来源:swap_colors.py

示例11: get_color_map

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def get_color_map(num_states):
    colours = plt.cm.viridis(np.linspace(0, 1, num_states))
    colormap = {i: colours[i] for i in range(num_states)}
    cmap = LinearSegmentedColormap.from_list('name',
                                             list(colormap.values()),
                                             num_states)
    return colormap, cmap
开发者ID:NLeSC,项目名称:UKMovementSensing,代码行数:9,代码来源:hsmm.py

示例12: heat_map

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
    def heat_map(self, cmap="RdYlGn", vmin=None, vmax=None, font_cmap=None):
        if cmap is None:
            carr = ["#d7191c", "#fdae61", "#ffffff", "#a6d96a", "#1a9641"]
            cmap = LinearSegmentedColormap.from_list("default-heatmap", carr)

        if isinstance(cmap, str):
            cmap = get_cmap(cmap)
        if isinstance(font_cmap, str):
            font_cmap = get_cmap(font_cmap)

        vals = self.actual_values.astype(float)
        if vmin is None:
            vmin = vals.min().min()
        if vmax is None:
            vmax = vals.max().max()
        norm = (vals - vmin) / (vmax - vmin)
        for ridx in range(self.nrows):
            for cidx in range(self.ncols):
                v = norm.iloc[ridx, cidx]
                if np.isnan(v):
                    continue
                color = cmap(v)
                hex = rgb2hex(color)
                styles = {"BACKGROUND": HexColor(hex)}
                if font_cmap is not None:
                    styles["TEXTCOLOR"] = HexColor(rgb2hex(font_cmap(v)))
                self.iloc[ridx, cidx].apply_styles(styles)
        return self
开发者ID:vanife,项目名称:tia,代码行数:30,代码来源:table.py

示例13: make_thresholded_slices

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def make_thresholded_slices(regions, colors, display_mode='z', overplot=True, binarize=True, **kwargs):
    """ Plots on axial slices numerous images
    regions: Nibabel images
    colors: List of colors (rgb tuples)
    overplot: Overlay images?
    binarize: Binarize images or plot full stat maps
    """             

    from matplotlib.colors import LinearSegmentedColormap
    from nilearn import plotting as niplt
    
    if binarize:
        for reg in regions:
             reg.get_data()[reg.get_data().nonzero()] = 1
                                   
    for i, reg in enumerate(regions):
        reg_color = LinearSegmentedColormap.from_list('reg1', [colors[i], colors[i]])
        if i == 0:
            plot = niplt.plot_stat_map(reg, draw_cross=False,  display_mode=display_mode, cmap = reg_color, alpha=0.9, colorbar=False, **kwargs)
        else:
            if overplot:
                plot.add_overlay(reg, cmap = reg_color, alpha=.72)
            else:
                plt.plot_stat_map(reg, draw_cross=False,  display_mode=display_mode, cmap = reg_color, colorbar=False, **kwargs)
    
    return plot
开发者ID:adelavega,项目名称:neurosynth-mfc,代码行数:28,代码来源:plotting.py

示例14: plot_colorblock

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def plot_colorblock(values, vmin=0, vmax=1, nColors=12, colors=[(0.75, 0.15, 0.15), (1, 0.75, 0.15), (0.15, 0.75, 0.15)]):
    """ 
    Create a colorblock figure.  Default color scheme is red to yellow to green with 12 colors.  
    This function can be used to generate dashboards with simple color indicators in each cell.
    
    Parameters
    -----------
    values : 2D np.array
        Values to plot in the colorblock
    
    vmin : float (optional)
        Colomap minimum, default = 0
    
    vmax : float (optional)
        Colomap maximum, default = 1
    
    num_colors : int (optional)
        Number of colors in the colormap
    
    colors : list (optional)
        List of colors, colors can be specified in any way understandable by matplotlib.colors.ColorConverter.to_rgb().
        Default is red to yellow to green.
    """
    from matplotlib.colors import LinearSegmentedColormap
    cmap = LinearSegmentedColormap.from_list(name='custom', colors = colors, N=nColors)
    
    fig = plt.imshow(values, cmap=cmap, aspect='equal', vmin=vmin, vmax=vmax)
    plt.axis('off')
    fig.axes.get_xaxis().set_visible(False)
    fig.axes.get_yaxis().set_visible(False)
开发者ID:cedricleroy,项目名称:pecos,代码行数:32,代码来源:graphics.py

示例15: truncate_colormap

# 需要导入模块: from matplotlib.colors import LinearSegmentedColormap [as 别名]
# 或者: from matplotlib.colors.LinearSegmentedColormap import from_list [as 别名]
def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100):
    """
    Truncates a colourmap.

    Parameters
    ----------
    cmap : `matplotlib.colors.LinearSegmentedColormap`
        Input colourmap.

    minval, maxval : float
        Interval to sample (minval >= 0, maxval <= 1)

    n : int
        Sampling density.

    Returns
    -------
    new_cmap : `matplotlib.colors.LinearSegmentedColormap`
        Truncated colourmap.

    """

    new_cmap = LinearSegmentedColormap.from_list(
        "trunc({n},{a:.2f},{b:.2f})".format(n=cmap.name, a=minval, b=maxval), cmap(np.linspace(minval, maxval, n))
    )

    return new_cmap
开发者ID:cwfinn,项目名称:igmtools,代码行数:29,代码来源:utils.py


注:本文中的matplotlib.colors.LinearSegmentedColormap.from_list方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。