本文整理汇总了Python中matplotlib.colors.LinearSegmentedColormap类的典型用法代码示例。如果您正苦于以下问题:Python LinearSegmentedColormap类的具体用法?Python LinearSegmentedColormap怎么用?Python LinearSegmentedColormap使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了LinearSegmentedColormap类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: cmapFromName
def cmapFromName(cmapname, ncols=256, bad=None):
"""
Do we need this?
"""
if not bad:
bad = [1.0, 1.0, 1.0, 0.0]
cmap = mpl.cm.get_cmap('jet', ncols)
if cmapname is not None:
if cmapname == 'b2r':
cmap = mpl.colors.LinearSegmentedColormap('my_colormap',
cdict, ncols)
elif cmapname == 'viridis' and StrictVersion(mpl.__version__) < StrictVersion('1.5.0'):
print("Mpl:", mpl.__version__, " using HB viridis")
cmap = LinearSegmentedColormap.from_list('viridis', viridis_data[::-1])
elif cmapname == 'viridis_r':
print("Using HB viridis_r")
cmap = LinearSegmentedColormap.from_list('viridis', viridis_data)
else:
try:
cmap = mpl.cm.get_cmap(cmapname, ncols)
except Exception as e:
print("Could not retrieve colormap ", cmapname, e)
cmap.set_bad(bad)
return cmap
示例2: get_colorMap_heat
def get_colorMap_heat():
""" according to the colorweel heat"""
color1 = np.array([0.0,14.,161.])/255.
color2 = np.array([0., 125., 11.])/255.
color3 = np.array([255.,255.,255.])/255.
color4 = np.array([255., 172., 0.])/255.
# color5 = np.array([ 184., 0.,18.])/255.
color5 = np.array([ 163., 0.,119.])/255.
cdict = {'red': ((0.0, color1[0], color1[0]),
(0.25,color2[0] ,color2[0]),
(0.5,color3[0] ,color3[0]),
(0.75,color4[0] ,color4[0]),
(1.00,color5[0] ,color5[0])),
'green': ((0.0, color1[1], color1[1]),
(0.25,color2[1] , color2[1]),
(0.5,color3[1] ,color3[1]),
(0.75,color4[1] ,color4[1]),
(1.0,color5[1] ,color5[1])),
'blue': ((0.0, color1[2], color1[2]),
(0.25, color2[2], color2[2]),
(0.5, color3[2] ,color3[2]),
(0.75,color4[2] ,color4[2]),
(1.0,color5[2] ,color5[2]))
}
hag_cmap = LinearSegmentedColormap('hag_cmap',cdict)
hag_cmap.set_bad('black')
return hag_cmap
示例3: get_colorMap_intensity_r
def get_colorMap_intensity_r():
""" according to the colorweel intensity II"""
color5 = [0.0,4./255,76./255]
color4 = [49./255., 130./255., 0.0]
color3 = [1.,197./255.,98./255.]
color2 = [245./255., 179./255., 223./255.]
color1 = [ 216./255., 1.0,1.0]
cdict = {'red': ((0.0, color1[0], color1[0]),
(0.25,color2[0] ,color2[0]),
(0.5,color3[0] ,color3[0]),
(0.75,color4[0] ,color4[0]),
(1.00,color5[0] ,color5[0])),
'green': ((0.0, color1[1], color1[1]),
(0.25,color2[1] , color2[1]),
(0.5,color3[1] ,color3[1]),
(0.75,color4[1] ,color4[1]),
(1.0,color5[1] ,color5[1])),
'blue': ((0.0, color1[2], color1[2]),
(0.25, color2[2], color2[2]),
(0.5, color3[2] ,color3[2]),
(0.75,color4[2] ,color4[2]),
(1.0,color5[2] ,color5[2]))
}
hag_cmap = LinearSegmentedColormap('hag_cmap',cdict)
hag_cmap.set_bad('black')
return hag_cmap
示例4: get_colorMap_water
def get_colorMap_water():
"""elevation map according to a tundra climate """
colors = []
# color.append(np.array([0.,0.,0.])/255.) #white for ice
# blue = np.array([ 0., 0., 50])/255.
blue = np.array([161., 190., 255.]) / 255.
colors.append(blue)
colors.append(blue)
# colors.append(np.array([39., 62., 44.])/255.)
# colors.append(np.array([77.,102.,70.])/255.)
# colors.append(np.array([126., 129., 110.])/255.)
# colors.append(np.array([ 95., 93.,94.])/255.)
# colors.append(np.array([1.,1.,1.])) #white for ice
steps = np.linspace(0,1,len(colors))
# print(len(colors))
# print(steps)
red = []
green = []
blue = []
for e,c in enumerate(colors):
red.append((steps[e],c[0],c[0]))
green.append((steps[e],c[1],c[1]))
blue.append((steps[e],c[2],c[2]))
cdict = {'red': red,
'green': green,
'blue': blue
}
hag_cmap = LinearSegmentedColormap('svalbard',cdict)
hag_cmap.set_bad(np.array([ 0., 0.,0.,0]))
return hag_cmap
示例5: cmap_powerlaw_adjust
def cmap_powerlaw_adjust(cmap, a):
'''
returns a new colormap based on the one given
but adjusted via power-law:
newcmap = oldcmap**a
'''
if a < 0.:
return cmap
cdict = copy(cmap._segmentdata)
def fn(x):
return (x[0]**a, x[1], x[2])
for key in ('red','green','blue'):
try:
cdict[key] = map(fn, cdict[key])
cdict[key].sort()
assert (cdict[key][0]<0 or cdict[key][-1]>1), \
"Resulting indices extend out of the [0, 1] segment."
except TypeError:
def fngen(f):
def fn(x):
return f(x)**a
return fn
cdict[key] = fngen(cdict[key])
newcmap = LinearSegmentedColormap('colormap',cdict,1024)
newcmap.set_bad(cmap(np.nan))
return newcmap
示例6: demo_compositing
def demo_compositing(im_r, im_g, im_b, im_rgb):
fig = plt.figure(3)
grid = ImageGrid(fig, 222,
nrows_ncols = (2, 2),
axes_pad = 0.1,
)
cm_red = LinearSegmentedColormap.from_list('cm_black_red',
[cm.colors.cnames['black'], cm.colors.cnames['red']])
cm_green = LinearSegmentedColormap.from_list('cm_black_green',
[cm.colors.cnames['black'], cm.colors.cnames['green']])
cm_blue= LinearSegmentedColormap.from_list('cm_black_blue',
[cm.colors.cnames['black'], cm.colors.cnames['blue']])
im_grid = [im_r, im_g, im_b, im_rgb]
color_maps = [cm_red, cm_green, cm_blue, None]
for i in range(4):
cmap = color_maps[i]
grid[i].imshow(im_grid[i], cmap = cmap, interpolation = 'nearest')
# The AxesGrid object work as a list of axes.
plt.show()
示例7: __init__
def __init__(self, name, segmented_data, index=None, **kwargs):
if index is None:
# If index not given, RGB colors are evenly-spaced in colormap.
index = np.linspace(0, 1, len(segmented_data['red']))
for key, value in segmented_data.items():
# Combine color index with color values.
segmented_data[key] = zip(index, value)
segmented_data = dict((key, [(x, y, y) for x, y in value])
for key, value in segmented_data.items())
LinearSegmentedColormap.__init__(self, name, segmented_data, **kwargs)
示例8: __init__
def __init__(self):
aggr1=0.2
aggr2 = 0.2
#fitnessCmap=LinearSegmentedColormap.from_list('fitness_map',[(aggr1,1,aggr1),(1,1,aggr1),(1,aggr1,aggr1)])
fitnessCmap = LinearSegmentedColormap.from_list('fitness_map',[(0, 1-aggr1, 0), (1-aggr1, 1-aggr1, 0), (1-aggr1, 0, 0)])
#complexityCmap = LinearSegmentedColormap.from_list('complexity_map', [(1,1,1),(aggr2, 1, 1), (aggr2,aggr2,1),(aggr2, aggr2, aggr2)])
complexityCmap = LinearSegmentedColormap.from_list('complexity_map',[(0.6, 0.6, 0.9),(0, 0, 0.3)])
self.complexity = complexityCmap#plt.get_cmap("cool")
self.globalm = fitnessCmap
self.localm = fitnessCmap#plt.get_cmap("RdYlGn")
示例9: newgray
def newgray():
""" Modified version of Oranges."""
oranges = cm.get_cmap("gray", 100)
array = oranges(np.arange(100))
array = array[40:]
cmap = LinearSegmentedColormap.from_list("newgray", array)
cm.register_cmap(name='newgray', cmap=cmap)
array = array[::-1]
cmap = LinearSegmentedColormap.from_list("newgray_r", array)
cm.register_cmap(name='newgray_r', cmap=cmap)
return
示例10: __init__
def __init__(self, name, color_data, index=None, **kwargs):
if not hasattr(color_data, 'keys'):
color_data = rgb_list_to_colordict(color_data)
if index is None:
# If index not given, RGB colors are evenly-spaced in colormap.
index = np.linspace(0, 1, len(color_data['red']))
# Adapt color_data to the form expected by LinearSegmentedColormap.
color_data = dict((key, [(x, y, y) for x, y in zip(index, value)])
for key, value in color_data.items())
LinearSegmentedColormap.__init__(self, name, color_data, **kwargs)
示例11: pl_hess_diag
def pl_hess_diag(
gs, gs_y1, gs_y2, x_min_cmd, x_max_cmd, y_min_cmd, y_max_cmd, x_ax, y_ax,
lkl_method, hess_xedges, hess_yedges, hess_x, hess_y, HD):
"""
Hess diagram of observed minus best match synthetic cluster.
"""
ax = plt.subplot(gs[gs_y1:gs_y2, 2:4])
# Set plot limits
plt.xlim(x_min_cmd, x_max_cmd)
plt.ylim(y_min_cmd, y_max_cmd)
# Set axis labels
plt.xlabel('$' + x_ax + '$', fontsize=18)
# Set minor ticks
ax.minorticks_on()
ax.xaxis.set_major_locator(MultipleLocator(1.0))
if gs_y1 == 0:
ax.set_title("Hess diagram (observed - synthetic)", fontsize=10)
for x_ed in hess_xedges:
# vertical lines
ax.axvline(x_ed, linestyle=':', lw=.8, color='k', zorder=1)
for y_ed in hess_yedges:
# horizontal lines
ax.axhline(y_ed, linestyle=':', lw=.8, color='k', zorder=1)
if HD.any():
# Add text box.
if HD.min() < 0:
plt.scatter(-100., -100., marker='s', lw=0., s=60, c='#0B02F8',
label='{}'.format(int(HD.min())))
if HD.max() > 0:
plt.scatter(-100., -100., marker='s', lw=0., s=60, c='#FB0605',
label='{}'.format(int(HD.max())))
# Define custom colorbar.
if HD.min() == 0:
cmap = LinearSegmentedColormap.from_list(
'mycmap', [(0, 'white'), (1, 'red')])
else:
# Zero point for empty bins which should be colored in white.
zero_pt = (0. - HD.min()) / float(HD.max() - HD.min())
N = 256.
zero_pt0 = np.floor(zero_pt * (N - 1)) / (N - 1)
zero_pt1 = np.ceil(zero_pt * (N - 1)) / (N - 1)
cmap = LinearSegmentedColormap.from_list(
'mycmap', [(0, 'blue'), (zero_pt0, 'white'), (zero_pt1,
'white'), (1, 'red')], N=N)
ax.pcolormesh(hess_x, hess_y, HD, cmap=cmap, vmin=HD.min(),
vmax=HD.max(), zorder=1)
# Legend.
handles, labels = ax.get_legend_handles_labels()
leg = ax.legend(
handles, labels, loc='lower right', scatterpoints=1, ncol=2,
columnspacing=.2, handletextpad=-.3, fontsize=10)
leg.get_frame().set_alpha(0.7)
示例12: _create_overlay_map
def _create_overlay_map():
#transparent colormap
global _over_red
r, g, b = plotParams['mask']['color']
cdict = {'red': ((0.0, r, r),
(1.0, r, r)),
'green': ((0.0, g, g),
(1.0, g, g)),
'blue': ((0.0, b, b),
(1.0, b, b))
}
_over_red = LinearSegmentedColormap('MaskOver', cdict)
_over_red.set_bad(alpha=0)
示例13: temp_style_file
def temp_style_file(name):
""" A context manager for creating an empty style file in the expected path.
"""
stylelib_path = USER_LIBRARY_PATHS[0]
if not os.path.exists(stylelib_path):
os.makedirs(stylelib_path)
srcname = os.path.abspath(os.path.join(os.path.dirname(__file__),name))
dstname = os.path.join(stylelib_path, os.path.basename(name))
if not os.path.exists(srcname):
raise RuntimeError('Cannot use file at "' + srcname + '". This file does not exist.')
if os.path.exists(dstname):
#raise RuntimeError('Cannot create a temporary file at "' + dstname + '". This file exists already.')
warnings.warn('Overwriting the temporary file at "' + dstname + '".')
#with open(filename, 'w'):
# pass
shutil.copy2(srcname, dstname)
rgb = [
( 0./255. , 0./255. , 0./255.),
( 0./255. , 102./255. , 51./255.),
#(114./255. , 121./255. , 126./255.),
( 91./255. , 172./255. , 38./255.),
(217./255. , 220./255. , 222./255.),
(255./255. , 255./255. , 255./255.)
]
# create map and register it together with reversed colours
maps = []
maps.append(LinearSegmentedColormap.from_list('IPU' , rgb))
maps.append(LinearSegmentedColormap.from_list('IPU_r', rgb[::-1]))
for cmap in maps:
mplcm.register_cmap(cmap=cmap)
#self._color_maps[cmap.name] = cmap
yield
os.remove(dstname)
#print('# styles available:', len(plt.style.available))
#
#with temp_style_file('dummy.mplstyle'):
# print('# before reload:', len(plt.style.available))
#
# plt.style.reload_library()
# print('# after reload:', len(plt.style.available))
示例14: green_white
def green_white(levels=10):
""" Generate a colormap from green to white.
"""
colors =[(0., 0.5, 0.),
(1., 1., 1.)]
return LinearSegmentedColormap.from_list(colors=colors, name='green_white', N=levels)
示例15: generate_cmap
def generate_cmap(colors):
values = range(len(colors))
vmax = np.ceil(np.max(values))
color_list = []
for v, c in zip(values, colors):
color_list.append( ( v/ vmax, c) )
return LinearSegmentedColormap.from_list('custom_cmap', color_list)