本文整理汇总了Python中matplotlib.collections.PolyCollection.set_alpha方法的典型用法代码示例。如果您正苦于以下问题:Python PolyCollection.set_alpha方法的具体用法?Python PolyCollection.set_alpha怎么用?Python PolyCollection.set_alpha使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.collections.PolyCollection
的用法示例。
在下文中一共展示了PolyCollection.set_alpha方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: funDisplayDifferenceCurveIn3D
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def funDisplayDifferenceCurveIn3D(vecDigitLevel, inputData_x, dataToDisplay_y, xLabelText, yLabelText, zLabelText, titleText, figureName):
'''
Exactly the same as the function above, but in 3D, yes in 3D, it is the future here.
'''
fig = plt.figure()
ax = fig.gca(projection='3d')
cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.2)
xs = inputData_x
verts = []
tabColor = []
zs = vecDigitLevel
for ii in np.arange(0,np.size(vecDigitLevel)):
ys = dataToDisplay_y[ii,:]
ys[0], ys[-1] = 0, 0
verts.append(list(zip(xs, ys)))
tabColor.append(list(cc(repr(vecDigitLevel[ii]/255.))))
poly = PolyCollection(verts, facecolors = tabColor)
poly.set_alpha(0.7)
ax.add_collection3d(poly, zs=zs, zdir='y')
ax.set_xlabel(xLabelText)#'level search')
ax.set_xlim3d(0, 255)
ax.set_ylabel(yLabelText)#'level tested')
ax.set_ylim3d(-1, 256)
ax.set_zlabel(zLabelText)#L difference')
ax.set_zlim3d(0, 1)
plt.title(titleText)#'Various difference curves in 3D')
plt.draw()
plt.savefig(figureName)# dirToSaveResults+prefixName+'_c1_2.png')
示例2: init
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def init(self, view):
cube_points = np.arange(0, 10, 0.4)
verts = []
# number of polygons
figures_num = [0.0, 1.0, 2.0, 3.0]
for z in figures_num:
ys = np.random.rand(len(cube_points))
ys[0], ys[-1] = 0, 0
verts.append(list(zip(cube_points, ys)))
poly = PolyCollection(verts, facecolors=[self.convert_color('r'), self.convert_color('g'), self.convert_color('b'),
self.convert_color('y')])
poly.set_alpha(0.7)
self.ax.add_collection3d(poly, zs=figures_num, zdir='y')
self.ax.set_xlabel('X')
self.ax.set_xlim3d(0, 10)
self.ax.set_ylabel('Y')
self.ax.set_ylim3d(-1, 4)
self.ax.set_zlabel('Z')
self.ax.set_zlim3d(0, 1)
if view == "image":
savefig('polygon.png')
print "Image saved on tredify folder"
else:
plt.show()
示例3: test_something
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def test_something(self):
fig = plt.figure()
ax = fig.gca(projection='3d')
cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.6)
xs = np.arange(0, 10, 0.4)
verts = []
zs = [0.0, 1.0, 2.0, 3.0]
for z in zs:
ys = np.random.rand(len(xs))
ys[0], ys[-1] = 0, 0
verts.append(list(zip(xs, ys)))
poly = PolyCollection(verts, facecolors = [cc('r'), cc('g'), cc('b'),
cc('y')])
poly.set_alpha(0.7)
ax.add_collection3d(poly, zs=zs, zdir='y')
ax.set_xlabel('Coordinate')
ax.set_xlim3d(0, 10)
ax.set_ylabel('hypothesis#')
ax.set_ylim3d(-1, 4)
ax.set_zlabel('Concentration')
ax.set_zlim3d(0, 1)
plt.show()
示例4: plotPolyArrayFunction
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def plotPolyArrayFunction(self,result):
interval = ((self.endValue - self.startValue) / (self.polyNumber - 1))
self.rr.reset()
fig = plt.figure()
ax = fig.gca(projection='3d')
if self.startValue is None:
self.startValue = self.rr.model[self.value]
columnNumber = self.polyNumber + 1
lastPoint = [self.endTime]
firstPoint = [self.startTime]
for i in range(int(columnNumber) - 1):
lastPoint.append(0)
firstPoint.append(0)
lastPoint = np.array(lastPoint)
firstPoint = np.array(firstPoint)
zresult = np.vstack((result, lastPoint))
zresult = np.vstack((firstPoint, zresult))
zs = []
result = []
for i in range(int(columnNumber) - 1):
zs.append(i)
result.append(zip(zresult[:, 0], zresult[:, (i + 1)]))
if self.color is None:
poly = PolyCollection(result)
else:
if len(self.color) != self.polyNumber:
self.color = self.colorCycle()
poly = PolyCollection(result, facecolors=self.color, closed=False)
poly.set_alpha(self.alpha)
ax.add_collection3d(poly, zs=zs, zdir='y')
ax.set_xlim3d(0, self.endTime)
ax.set_ylim3d(0, (columnNumber - 1))
ax.set_zlim3d(0, (self.endValue + interval))
if self.xlabel == 'toSet':
ax.set_xlabel('Time')
elif self.xlabel:
ax.set_xlabel(self.xlabel)
if self.ylabel == 'toSet':
ax.set_ylabel('Trial Number')
elif self.ylabel:
ax.set_ylabel(self.ylabel)
if self.zlabel == 'toSet':
ax.set_zlabel(self.value)
elif self.zlabel:
ax.set_zlabel(self.zlabel)
# ax.set_xlabel('Time') if self.xlabel is None else ax.set_xlabel(self.xlabel)
# ax.set_ylabel('Trial Number') if self.ylabel is None else ax.set_ylabel(self.ylabel)
# ax.set_zlabel(self.value) if self.zlabel is None else ax.set_zlabel(self.zlabel)
if self.title is not None:
ax.set_title(self.title)
if not IPYTHON:
plt.show()
else:
FILENAME = str(uuid.uuid4()) + ".png"
plt.savefig(FILENAME)
plt.close()
imag = mpimg.imread(FILENAME)
return(imag)
示例5: plot_series
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def plot_series(time, variable, series, ylabel='Y', zlabel='Z', fromzero=False):
figure = plt.figure()
ax = figure.gca(projection='3d')
globalmin = np.min(map(lambda trial: np.min(trial), series))
globalmax = np.max(map(lambda trial: np.max(trial), series))
def stub(trial):
if not fromzero:
trial = map(lambda x: x - globalmin, np.array(trial))
trial[0] = 0
trial[-1] = 0
return np.array(trial)
verts = map(lambda trial: zip(time, stub(trial)), series)
poly = PolyCollection(np.array(verts), facecolors=map(lambda n: cm.jet(n), np.linspace(0, 1, len(series))))
poly.set_alpha(0.7)
if not fromzero:
globalmax -= globalmin
globalmin -= globalmin
ax.add_collection3d(poly, zs=variable, zdir='y')
ax.set_xlim3d(time[0], time[-1])
ax.set_ylim3d(min(variable), max(variable))
ax.set_zlim3d(globalmin, globalmax)
ax.set_xlabel('Time (ms)')
ax.set_ylabel(ylabel)
ax.set_zlabel(zlabel)
示例6: plot4MainDir
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def plot4MainDir(degVector):
fourDirVector = allDeg24Directions(degVector['Value'])
pHours = 24 # periodo considerado
sampling = 60 # 10min de amostragem
base = pHours*60/sampling
totDays = len(fourDirVector)/base # Dias multiplo de 5, para graficos poly 3d
days = np.arange(totDays)+1
hours = np.arange(0,pHours*60,sampling)
meshTime, indices = np.meshgrid(hours, days)
meshProfile = np.zeros(meshTime.shape)
profileList = []
ii = 1
for i in range(totDays):
dataPeriod = fourDirVector[i*base:ii*base]
profileList.append( dataPeriod )
ii +=1
profileMatrix = np.array(profileList)
for i in range( indices.shape[0] ):
for j in range( indices.shape[1] ):
meshProfile[(i,j)] = profileMatrix[(i,j)]
fig = plt.figure()
ax = fig.gca(projection='3d')
X = meshTime
Y = indices
Z = meshProfile
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='coolwarm', alpha=0.8) # ou a linha abaixo
ax.set_xlabel('minutos')
ax.set_ylabel('dia')
ax.set_zlabel(r'$^oC$')
# Visao apenas dos perfis
fig2 = plt.figure()
ax2 = fig2.gca(projection='3d')
cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.6)
verts = []
cs = [cc('r'), cc('g'), cc('b'), cc('y'), cc('c')]*(totDays/5)
k = 0
for d in days:
verts.append(list(zip(hours, meshProfile[k])))
k += 1
poly = PolyCollection(verts, facecolors = cs)
poly.set_alpha(0.7)
ax2.add_collection3d(poly, zs=days, zdir='y')
""" OK! Mostra grafico de barras
cs = ['r', 'g', 'b', 'y','c']*(totDays/5)
k = 0
for c, d in zip(cs, days):
cc = [c]*len(hours)
ax2.bar(hours, meshProfile[k], zs=d, zdir='y', color=cc, alpha=0.5)
k += 1
"""
ax2.set_xlabel('minutos')
ax2.set_xlim3d(0, hours[-1])
ax2.set_ylabel('dia')
ax2.set_ylim3d(0, days[-1])
ax2.set_zlabel('Dir')
ax2.set_zlim3d(0, 360)
plt.show()
示例7: make_image
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def make_image(x):
''' x wil be a matrix data structure. '''
fig = plt.figure()
ax = fig.gca(projection='3d')
#
cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.6)
#
xs = np.arange(0, 10, 0.4)
verts = x.get_verts('freq')
for i in xrange(17):
print verts[0][i],'\n'
for i in xrange(17):
print verts[1][i],'\n'
zs = [0.0, 1.0, 2.0, 3.0]
# for z in zs:
# ys = np.random.rand(len(xs))
# ys[0], ys[-1] = 0, 0
# verts.append(list(zip(xs, ys)))
# poly = PolyCollection(verts, facecolors = [cc('r'), cc('g'), cc('b'),cc('y')])
poly = PolyCollection(verts)
poly.set_alpha(0.3)
# ax.add_collection3d(poly, zs=zs, zdir='y')
ax.add_collection3d(poly, zs=zs, zdir='y')
#
ax.set_xlabel('X')
ax.set_xlim3d(0, 123456)
ax.set_ylabel('Y')
ax.set_ylim3d(0, 65536)
ax.set_zlabel('Z')
ax.set_zlim3d(0, 1000)
#
plt.show()
示例8: poly3d
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def poly3d(df, elev=0, azim=0, **pltkwds):
''' Written by evelyn, updated by Adam 12/1/12.'''
xlabel, ylabel, title, pltkwds=pu.smart_label(df, pltkwds)
zlabel_def=''
zlabel=pltkwds.pop('zlabel', zlabel_def)
zs=df.columns
verts=[zip(df.index, df[col]) for col in df] #don't have to say df.columns
fig = plt.figure()
ax = fig.gca(projection='3d')
### Convert verts(type:list) to poly(type:mpl_toolkits.mplot3d.art3d.Poly3DCollection)
### poly used in plotting function ax.add_collection3d to do polygon plot
cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.6)
poly = PolyCollection((verts), facecolors = [cc('b'), cc('g'), cc('r'),
cc('y'),cc('m'), cc('c'), cc('b'),cc('g'),cc('r'), cc('y')])
poly.set_alpha(0.2)
### zdir is the direction used to plot,here we use time so y axis
ax.add_collection3d(poly, zs=zs, zdir='x')
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel) #Y
ax.set_zlabel(zlabel) #data
ax.set_title(title)
ax.set_ylim3d(min(df.index), max(df.index))
ax.set_xlim3d(min(df.columns), max(df.columns)) #x
ax.set_zlim3d(min(df.min()), max(df.max())) #How to get absolute min/max of df values
ax.view_init(elev, azim)
return ax
示例9: multidraw
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def multidraw(courbesA,courbesB):
fig = plt.figure()
ax = fig.gca(projection='3d')
verts = []
facecolor=[]
for lacourbe in courbesA:
xs=[]
closepoly=[]
for idx,X in enumerate(lacourbe):
xs.append(idx)
closepoly.append(0)
xs.append(idx)
closepoly.append(X)
xs.append(idx+.3)
closepoly.append(X)
xs.append(idx+.3)
closepoly.append(0)
xs.append(0)
closepoly.append(0)
verts.append(list(zip(xs, closepoly)))
facecolor.append(cc('b'))
for lacourbe in courbesB:
xs=[]
closepoly=[]
for idx,X in enumerate(lacourbe):
xs.append(idx)
closepoly.append(0)
xs.append(idx)
closepoly.append(X)
xs.append(idx+.3)
closepoly.append(X)
xs.append(idx+.3)
closepoly.append(0)
xs.append(0)
closepoly.append(0)
verts.append(list(zip(xs, closepoly)))
facecolor.append(cc('y'))
print len(facecolor) ,len(verts)
poly = PolyCollection(verts, facecolors=facecolor)
zs = range(0,len(facecolor))
poly.set_alpha(0.7)
ax.add_collection3d(poly, zs=zs, zdir='y')
ax.set_xlabel('X')
ax.set_xlim3d(0,5)
ax.set_ylabel('Y')
ax.set_ylim3d(-1, len(verts))
ax.set_zlabel('Z')
ax.set_zlim3d(-3, 3)
plt.show()
示例10: plotPolyArray
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def plotPolyArray(self):
"""Plots results as individual graphs parallel to each other in 3D space using results
from graduatedSim().
p.plotPolyArray()"""
result = self.graduatedSim()
interval = (self.endValue - self.startValue) / (self.polyNumber - 1)
self.rr.reset()
fig = plt.figure()
ax = fig.gca(projection="3d")
if self.startValue is None:
self.startValue = self.rr.model[self.value]
columnNumber = self.polyNumber + 1
lastPoint = [self.endTime]
firstPoint = [self.startTime]
for i in range(int(columnNumber) - 1):
lastPoint.append(0)
firstPoint.append(0)
lastPoint = np.array(lastPoint)
firstPoint = np.array(firstPoint)
zresult = np.vstack((result, lastPoint))
zresult = np.vstack((firstPoint, zresult))
zs = []
result = []
for i in range(int(columnNumber) - 1):
zs.append(i)
result.append(zip(zresult[:, 0], zresult[:, (i + 1)]))
if self.color is None:
poly = PolyCollection(result)
else:
if len(self.color) != self.polyNumber:
self.color = self.colorCycle()
poly = PolyCollection(result, facecolors=self.color, closed=False)
poly.set_alpha(self.alpha)
ax.add_collection3d(poly, zs=zs, zdir="y")
ax.set_xlim3d(0, self.endTime)
ax.set_ylim3d(0, (columnNumber - 1))
ax.set_zlim3d(0, (self.endValue + interval))
if self.xlabel == "toSet":
ax.set_xlabel("Time")
elif self.xlabel:
ax.set_xlabel(self.xlabel)
if self.ylabel == "toSet":
ax.set_ylabel("Trial Number")
elif self.ylabel:
ax.set_ylabel(self.ylabel)
if self.zlabel == "toSet":
ax.set_zlabel(self.value)
elif self.zlabel:
ax.set_zlabel(self.zlabel)
# ax.set_xlabel('Time') if self.xlabel is None else ax.set_xlabel(self.xlabel)
# ax.set_ylabel('Trial Number') if self.ylabel is None else ax.set_ylabel(self.ylabel)
# ax.set_zlabel(self.value) if self.zlabel is None else ax.set_zlabel(self.zlabel)
if self.title is not None:
ax.set_title(self.title)
plt.show()
示例11: redraw
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def redraw(self):
self._canvas.axes.grid(True, color='gray')
# Set axis bounds
ymin = ymax = None
xmax = 0
xmin = sys.maxint
for curve in self._curves.values():
data_x, _, _, range_y, c = curve
if len(data_x) == 0:
continue
xmax = max(xmax, data_x[-1])
xmin = min(xmin, data_x[0])
if ymin is None:
ymin = range_y[0]
ymax = range_y[1]
else:
ymin = min(range_y[0], ymin)
ymax = max(range_y[1], ymax)
# pad the min/max
# delta = max(ymax - ymin, 0.1)
# ymin -= .05 * delta
# ymax += .05 * delta
if self._autoscroll and ymin is not None:
self._canvas.axes.set_xbound(lower=xmin, upper=xmax)
self._canvas.axes.set_zbound(lower=ymin, upper=ymax)
self._canvas.axes.set_ybound(lower=0,
upper=len(self._curves.keys()))
# create poly object
verts = []
colors = []
for curve_id in self._curves_verts.keys():
(data_x, data_y) = self._curves_verts[curve_id]
colors.append(self._curves[curve_id][4])
if self._use_poly:
verts.append([(xmin, ymin)] + list(zip(data_x, data_y))
+ [(xmax, ymin)])
else:
verts.append(zip(data_x, data_y))
line_num = len(self._curves.keys())
if self._use_poly:
poly = PolyCollection(verts, facecolors=colors, closed=False)
else:
poly = LineCollection(verts, colors=colors)
poly.set_alpha(0.7)
self._canvas.axes.cla()
self._canvas.axes.add_collection3d(poly,
zs=range(line_num), zdir='y')
self._update_legend()
self._canvas.draw()
示例12: plot_energy_3d
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def plot_energy_3d(name, key_steps=50, filename=None):
data = np.loadtxt('%s_energy.ndt' % name)
if data.ndim == 1:
data.shape = (1, -1)
fig = plt.figure()
ax = fig.gca(projection='3d')
# image index
xs = range(1, data.shape[1])
steps = data[:, 0]
each_n_step = int(len(steps) / key_steps)
if each_n_step < 1:
each_n_step = 1
cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.6)
colors = [cc('r'), cc('g'), cc('b'), cc('y')]
facecolors = []
line_data = []
energy_min = np.min(data[:, 1:])
zs = []
index = 0
for i in range(0, len(steps), each_n_step):
line_data.append(list(zip(xs, data[i, 1:] - energy_min)))
facecolors.append(colors[index % 4])
zs.append(data[i, 0])
index += 1
poly = PolyCollection(line_data, facecolors=facecolors, closed=False)
poly.set_alpha(0.7)
ax.add_collection3d(poly, zs=zs, zdir='x')
ax.set_xlabel('Steps')
ax.set_ylabel('images')
ax.set_zlabel('Energy (J)')
ax.set_ylim3d(0, len(xs) + 1)
ax.set_xlim3d(0, int(data[-1, 0]) + 1)
ax.set_zlim3d(0, np.max(data[:, 1:] - energy_min))
if filename is None:
filename = '%s_energy_3d.pdf' % name
fig.savefig(filename)
示例13: _waveform_3d
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def _waveform_3d(self, fig_type, zmin, zmax, alpha, cmap):
fig = plt.figure(figsize=(10, 10))
ax = fig.gca(projection='3d')
num_times = self._inspector.num_times
num_samples = self._inspector.num_samples
if fig_type == 'surf':
x = np.arange(0, num_samples)
y = np.arange(0, num_times)
x, y = np.meshgrid(x, y)
z = self._inspector.waveform
surf = ax.plot_surface(x, y, z, rstride=3, cstride=3, cmap=cmap, shade=True,
linewidth=0, antialiased=False)
# ax.zaxis.set_major_locator(LinearLocator(10))
# ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
fig.colorbar(surf, shrink=0.5, aspect=5)
else:
waveforms = []
for y_index in range(num_times):
waveform = np.ndarray(shape=(num_samples, 2), dtype=np.float64)
waveform[:, 0] = np.arange(0, num_samples)
waveform[:, 1] = self._inspector.waveform[y_index]
waveforms.append(waveform)
line_widths = [0.5] * num_times
# TODO (forman, 20160725): check why cmap is not recognized
if fig_type == 'poly':
edge_colors = ((0.2, 0.2, 1., 0.7),) * num_times
face_colors = ((1., 1., 1., 0.5),) * num_times
collection = PolyCollection(waveforms, cmap=cmap,
linewidths=line_widths,
edgecolors=edge_colors,
facecolors=face_colors)
else:
colors = ((0.2, 0.2, 1., 0.7),) * num_times
collection = LineCollection(waveforms, cmap=cmap,
linewidths=line_widths, colors=colors)
collection.set_alpha(alpha)
ax.add_collection3d(collection, zs=np.arange(0, num_times), zdir='y')
wf_min, wf_max = self._inspector.waveform_range
ax.set_xlabel('Echo Sample Index')
ax.set_xlim3d(0, num_samples - 1)
ax.set_ylabel('Time Index')
ax.set_ylim3d(0, num_times - 1)
ax.set_zlabel('Waveform')
ax.set_zlim3d(zmin if zmin is not None else wf_min, zmax if zmax is not None else wf_max)
if self._interactive:
plt.show()
else:
self.savefig("fig-waveform-3d-%s.png" % fig_type)
示例14: plot_multiple_timeseries
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def plot_multiple_timeseries(windpark, show=True):
"""Plot multiple power series of some turbines.
Parameters
----------
windpark : Windpark
A given windpark to plot power series.
"""
X = np.array(windpark.get_powermatrix())
number_turbines = len(X[0])
number_measurements = len(X)
length = 100
X = X[:length]
fig = plt.figure()
ax = fig.gca(projection='3d')
# cc = lambda arg: colorConverter.to_rgba(arg, alpha=0.6)
def cc(arg):
return colorConverter.to_rgba(arg, alpha=0.6)
xs = range(1, number_measurements)
verts = []
zs = range(0, number_turbines)
for z in zs:
ys = X[:, z]
ys[0], ys[-1] = 0, 0
verts.append(list(zip(xs, ys)))
poly = PolyCollection(verts,
facecolors=[cc('r'), cc('g'), cc('b'),
cc('y'), cc('r'), cc('g'), cc('b')])
poly.set_alpha(0.7)
ax.add_collection3d(poly, zs=zs, zdir='y')
ax.set_xlabel('Time')
ax.set_xlim3d(0, length)
ax.set_ylabel('Turbine')
ax.set_ylim3d(-1, number_turbines)
ax.set_zlabel('Power')
ax.set_zlim3d(0, 30.)
plt.title("Time Series Comparison")
if show:
plt.show()
示例15: plot_population
# 需要导入模块: from matplotlib.collections import PolyCollection [as 别名]
# 或者: from matplotlib.collections.PolyCollection import set_alpha [as 别名]
def plot_population(ivp, depv_z_map):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
verts=[]
nt = 1000
t = np.linspace(ivp.indepv_out()[0],
ivp.indepv_out()[-1], nt)
n = len(depv_z_map)
maxval = 0
# Get interpolated (and back-transformed) results
tm = time.time()
for depv, x in depv_z_map.items():
interpol = ivp.get_interpolated(t, [depv])
# Let polygons be aligned with bottom
# (important: choose nt large!)
interpol[0,0] = 0.0
interpol[0,-1] = 0.0
# Check fo new max value:
maxval = max(maxval, np.max(interpol))
stacked = zip(t,interpol.reshape(nt))
verts.append(stacked)#.transpose())
print("Time of interpolation and back transformation: {}".format(
time.time()-tm))
# Generate plot
tm = time.time()
poly = PolyCollection(verts, facecolors = [
'rgbk'[i%4] for i in range(len(verts))])
poly.set_alpha(0.7)
ax.add_collection3d(poly, zs=[
x+1 for x in depv_z_map.values()], zdir='y')
ax.set_xlabel('t')
ax.set_xlim3d(0, t[-1])
ax.set_ylabel('y')
ax.set_ylim3d(0.5, n+0.5)
ax.set_zlabel('z')
ax.set_zlim3d(0, maxval)
ya = ax.get_yaxis()
ya.set_major_locator(MaxNLocator(integer=True))
print ("Time of plot generation: {}".format(time.time()-tm))
plt.show()