本文整理汇总了Python中matplotlib.backends.backend_pdf.PdfPages.savefig方法的典型用法代码示例。如果您正苦于以下问题:Python PdfPages.savefig方法的具体用法?Python PdfPages.savefig怎么用?Python PdfPages.savefig使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.backends.backend_pdf.PdfPages
的用法示例。
在下文中一共展示了PdfPages.savefig方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: output
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def output(f, directory, folder, filename, extra=None, pdf=False, show=None):
"""Output the file in the defined folder """
pd = os.path.normpath(os.path.join(dir,directory,folder))
try:
os.stat(os.path.dirname(pd))
except:
os.mkdir(os.path.dirname(pd))
try:
os.stat(pd)
except:
os.mkdir(pd)
# Saving
if not extra:
f.savefig(os.path.join(pd,filename), facecolor='w', edgecolor='w', bbox_inches='tight', dpi=300)
else:
f.savefig(os.path.join(pd,filename), facecolor='w', edgecolor='w', bbox_extra_artists=(extra), bbox_inches='tight',dpi=300)
if pdf:
try:
pp = PdfPages(os.path.join(pd,filename) + '.pdf')
pp.savefig(f, bbox_extra_artists=(extra),bbox_inches='tight')
pp.close()
except:
print("ERROR: Problem in PDF conversion. Skipped.")
if show:
plt.show()
示例2: plot_psi_weights
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def plot_psi_weights(output,
modelfile='/d/monk/eigenbrot/WIYN/14B-0456/anal/models/allZ2_vardisp/allz2_vardisp_batch_interp.fits'):
#Like the last page of all the fit plots, but for all pointings at once
#cribbed from plot_bc_vardisp.py
m = pyfits.open(modelfile)[1].data[0]
numZ = np.unique(m['Z'][:,0]).size
numAge = np.unique(m['AGE'][:,0]).size
big_W = np.zeros((numZ,numAge))
for p in range(6):
coeffile = 'NGC_891_P{}_bin30_allz2.coef.fits'.format(p+1)
print coeffile
coef_arr = pyfits.open(coeffile)[1].data
numap = coef_arr['VSYS'].size
for i in range(numap):
wdata = coef_arr[i]['LIGHT_FRAC'].reshape(numZ,numAge)
big_W += wdata/np.max(wdata)
bwax = plt.figure().add_subplot(111)
bwax.imshow(big_W,origin='lower',cmap='Blues',interpolation='none')
bwax.set_xlabel('SSP Age [Gyr]')
bwax.set_xticks(range(numAge))
bwax.set_xticklabels(m['AGE'][:numAge,0]/1e9)
bwax.set_ylabel(r'$Z/Z_{\odot}$')
bwax.set_yticks(range(numZ))
bwax.set_yticklabels(m['Z'][::numAge,0])
pp = PDF(output)
pp.savefig(bwax.figure)
pp.close()
plt.close(bwax.figure)
return
示例3: profile_batch
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def profile_batch(radius,output):
pp = PDF(output)
for sim in glob('sim*.fits'):
print sim
header = pyfits.open(sim)[0].header
w = header['W']
N = header['N']
pitch = header['PITCH']
ang = header['VIEWANG']
pitch = int(np.pi*2/pitch)
ang = int(np.pi*2/ang)
v, line, _ = salty.line_profile(sim,radius,pxbin=4.,plot=False)
ax = plt.figure().add_subplot(111)
ax.set_xlabel('Velocity [km/s]')
ax.set_ylabel('Normalized power')
ax.set_title(sim)
ax.text(300,0.005,
'$w={}$\n$N={}$\n$p=\\tau/{}$\n$\\theta_{{view}}=\\tau/{}$'.\
format(w,N,pitch,ang))
ax.plot(v,line)
pp.savefig(ax.figure)
pp.close()
示例4: plot_data_comb_2D
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def plot_data_comb_2D(self, results_path, file_n, data, fit, timepoints):
pp = PdfPages(results_path+'/'+file_n)
cc = 0
for tp in timepoints:
xmin, xmax = -3, 3
ymin, ymax = -3, 3
xx, yy = mgrid[xmin:xmax:100j, ymin:ymax:100j]
positions = vstack([xx.ravel(), yy.ravel()])
values = vstack([ log10(1+data[tp][:, 0]), log10(1+data[tp][:, 1])])
kernel = st.gaussian_kde(values)
f = reshape(kernel(positions).T, xx.shape)
xxf, yyf = mgrid[xmin:xmax:100j, ymin:ymax:100j]
positions_f = vstack([xxf.ravel(), yyf.ravel()])
values_f = vstack([log10(1+fit[tp][:, 0]), log10(1+fit[tp][:, 1])])
kernel_f = st.gaussian_kde(values_f)
ff = reshape(kernel_f(positions_f).T, xxf.shape)
ax = plt.subplot(4, 5, cc+1)
ax.contourf(xx, yy, f, cmap='Blues')
ax.contourf(xxf, yyf, ff, cmap='Reds')
ax.set_xlim([-1, 3])
ax.set_ylim([-1, 3])
cc += 1
pp.savefig()
plt.close()
pp.close()
示例5: print_pdf_graph
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def print_pdf_graph(file_f, regulon, conn):
pdf = PdfPages(file_f)
edgesLimits = [50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
#CRP = regulon_set['LexA']
for lim in edgesLimits:
print lim
g = buildSimilarityGraph_top_10_v2(conn, lim)
# Here the node is motif, eg 87878787_1, the first 8 digits represent gi
node_color = [ 1 if node[0:8] in regulon else 0 for node in g ]
pos = nx.graphviz_layout(g, prog="neato")
plt.figure(figsize=(10.0, 10.0))
plt.axis("off")
nx.draw(g,
pos,
node_color = node_color,
node_size = 20,
alpha=0.8,
with_labels=False,
cmap=plt.cm.jet,
vmax=1.0,
vmin=0.0
)
pdf.savefig()
plt.close()
pdf.close()
示例6: err_histogram
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def err_histogram(output, basedir='.',bins=10, field='MLWA', err='dMLWA', suffix='coef',
label=r'$\delta\tau_{L,\mathrm{fit}}/\tau_L$',exclude=exclude, ymax=90):
ratio_list = []
for p in range(6):
coef = '{}/NGC_891_P{}_bin30_allz2.{}.fits'.format(basedir,p+1,suffix)
print coef
c = pyfits.open(coef)[1].data
tmp = c[err]
if field == 'TAUV':
tmp *= 1.086
else:
tmp /= c[field]
tmp = np.delete(tmp,np.array(exclude[p]) - 1)
ratio_list.append(tmp)
ratio = np.hstack(ratio_list)
ratio = ratio[ratio == ratio]
ratio = ratio[np.where(ratio < 0.8)[0]]
ax = plt.figure().add_subplot(111)
ax.set_xlabel(label)
ax.set_ylabel(r'$N$')
ax.hist(ratio, bins=bins, histtype='step', color='k')
ax.set_xlim(0,0.52)
ax.set_xticks([0,0.1,0.2,0.3,0.4,0.5])
ax.set_ylim(0,ymax)
ax.set_yticks(range(0,int(ymax/10)*10+10,int(int(ymax/10)/4)*10))
pp = PDF(output)
pp.savefig(ax.figure)
pp.close()
plt.close(ax.figure)
return
示例7: make_comp_plot_1D
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def make_comp_plot_1D(self, results_path, file_n, data, sims, timepoints, ind=0):
pp = PdfPages(results_path+'/'+file_n)
cc = 0
xmin, xmax = -1, 7
x_grid = linspace(xmin, xmax, 1000)
def kernel_est(d, ind, x_grid):
dl = log10(1+d[:, ind])
#dl[isneginf(dl)] = 0
dl = dl[isfinite(dl)]
kde = st.gaussian_kde(dl, bw_method=0.2)
pdf = kde.evaluate(x_grid)
return pdf
for tp in timepoints:
pdf_data = kernel_est(data[tp], ind, x_grid)
pdf_sim = kernel_est(sims[tp], ind, x_grid)
ax = plt.subplot(4, 5, cc + 1)
ax.plot(x_grid, pdf_data, color='blue', alpha=0.5, lw=3)
ax.plot(x_grid, pdf_sim, color='red', alpha=0.5, lw=3)
cc += 1
pp.savefig()
plt.close()
pp.close()
示例8: show_or_save
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def show_or_save(plt, fig, use_x11, filename):
if use_x11:
plt.show()
else:
pp = PdfPages(filename)
pp.savefig(fig)
pp.close()
示例9: heat_map_single
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def heat_map_single(data, file = "heat_map_plate.pdf", *args, **kwargs):
""" Create a heat_map for a single readout
Create a heat_map for a single readout
..todo:: Share code between heat_map_single and heat_map_multiple
"""
np_data = data.data
pp = PdfPages(os.path.join(PATH, file))
fig, ax = plt.subplots()
im = ax.pcolormesh(np_data, vmin=np_data.min(), vmax=np_data.max()) # cmap='RdBu'
fig.colorbar(im)
# put the major ticks at the middle of each cell
ax.set_xticks(np.arange(np_data.shape[1]) + 0.5, minor=False)
ax.set_yticks(np.arange(np_data.shape[0]) + 0.5, minor=False)
# Invert the y-axis such that the data is displayed as it appears on the plate.
ax.invert_yaxis()
ax.xaxis.tick_top()
ax.set_xticklabels(data.axes['x'], minor=False)
ax.set_yticklabels(data.axes['y'], minor=False)
pp.savefig(fig)
pp.close()
fig.clear()
return ax
示例10: plotDifElev
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def plotDifElev(outputname, outDir, title, x, y, colour, xlabel, ylabel, plttitle):
"""Plot modelled data.
To use: plotDifElev(outputname,outDir, title, x, y, colour)"""
#
matplotlib.rcParams["axes.grid"] = True
matplotlib.rcParams["legend.fancybox"] = True
matplotlib.rcParams["figure.figsize"] = 11.69, 8.27 # A4
matplotlib.rcParams["savefig.dpi"] = 300
plotName = outputname + ".pdf"
pp1 = PdfPages(os.path.join(outDir, plotName))
fig1 = plt.figure(1)
ax1 = fig1.add_subplot(111)
xmax = max(x)
xmin = min(x)
labelString = title
ax1.plot(x, y, color=colour, marker="o", linestyle="None", label=labelString)
matplotlib.pyplot.axes().set_position([0.04, 0.065, 0.8, 0.9])
ax1.plot([xmin / 1.01, xmax * 1.01], [0, 0], "-k")
plt.axis([xmin / 1.01, xmax * 1.01, -2, 2])
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(plttitle)
pp1.savefig(bbox_inches="tight")
pp1.close()
plt.close()
return 0
示例11: plotDif
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def plotDif(outputname, outDir, title, x, y, colour):
"""Plot modelled data.
To use: plotDif(outputname,outDir, title, x, y, colour)"""
#
matplotlib.rcParams["axes.grid"] = True
matplotlib.rcParams["legend.fancybox"] = True
matplotlib.rcParams["figure.figsize"] = 11.69, 8.27 # A4
matplotlib.rcParams["savefig.dpi"] = 300
plotName = outputname + ".pdf"
pp1 = PdfPages(os.path.join(outDir, plotName))
fig1 = plt.figure(1)
ax1 = fig1.add_subplot(111)
xmax = max(x)
xmin = min(x)
ymax = max(y)
ymin = min(y)
labelString = title
ax1.plot(x, y, color=colour, marker="o", linestyle="None", label=labelString)
matplotlib.pyplot.axes().set_position([0.04, 0.065, 0.8, 0.9])
ax1.legend(bbox_to_anchor=(0.0, 1), loc=2, borderaxespad=0.1, ncol=3, title="Julian Day")
ax1.plot([xmin, xmax], [xmin, xmax], "-k")
plt.axis([xmin + 0.1, xmax + 0.1, ymin + 0.1, ymax + 0.1])
plt.xlabel("Measured Melt (m.w.e.)")
plt.ylabel("Modelled Melt (m.w.e.)")
plt.title("Modelled against Measured")
# plt.show()
pp1.savefig(bbox_inches="tight")
pp1.close()
plt.close()
return 0
示例12: srv_anomaly_qoe_liftchart
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def srv_anomaly_qoe_liftchart(datafolder, observe_srv, method, anormaly_name):
plt_styles = ['k-', 'b-.', 'r:', 'm--', 'y-s', 'k-+', 'g-^', 'b-o', 'r-*', 'm-d']
cmp_srv_qoes = {}
cmp_srv_load = {}
filter_obj = dict(filter_key="Server", filter_value=observe_srv)
filesuffix = '_' + method + '.json'
srv_qoes = filter_read_by_suffix(datafolder + '/' + anormaly_name + '/', filesuffix, filter_obj)
cmp_srv_qoes[anormaly_name] = srv_qoes
srv_qoes = filter_read_by_suffix(datafolder + '/normal/', filesuffix, filter_obj)
cmp_srv_qoes['normal'] = srv_qoes
fig, ax = plt.subplots()
plt_count = 0
for key in cmp_srv_qoes:
print "Processing ", len(cmp_srv_qoes[key]), " streaming sessions in ", key, "!"
cmp_srv_load[key] = len(cmp_srv_qoes[key])
draw_lift_chart(cmp_srv_qoes[key], plt_styles[plt_count], key)
plt_count = plt_count + 1
ax.set_xlabel(r'User Percentile', fontsize=20)
ax.set_ylabel(r'Session QoE', fontsize=20)
ax.set_title('Compare users\' QoE lift curve with server ' + observe_srv + " with and without " + anormaly_name + " using method " + method, fontsize=20)
plt.legend(bbox_to_anchor=(0.85, 0.4))
plt.show()
pdf = PdfPages('./imgs/anormaly_cmp_liftcurve_' + method + '_' + anormaly_name + '.pdf')
pdf.savefig(fig)
pdf.close()
return cmp_srv_load
示例13: plotTime
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def plotTime():
#Time levels
pp = PdfPages('time.pdf')
lev1 = 0
lev2 = 0
lev3 = 0
lev4 = 0
lev5 = 0
lev6 = 0
for time in userTime.keys():
if len(time) > 0:
intTime = int(time)
if intTime < 10:
lev1 += 1 * userTime[time]
elif intTime >=10 and intTime < 20:
lev2 += 1 * userTime[time]
elif intTime >= 20 and intTime < 30:
lev3 += 1 * userTime[time]
elif intTime >=30 and intTime < 40:
lev4 += 1 * userTime[time]
elif intTime >=40 and intTime < 50:
lev5 += 1 * userTime[time]
else:
lev6 += 1 * userTime[time]
labels = '10-', '10-20', '20-30', '30-40', '40-50', '50+'
sizes = [lev1, lev2, lev3, lev4, lev5, lev6]
colors = ['yellowgreen', 'gold', 'lightskyblue', 'blue', 'lightcoral', 'red']
plt.figure()
plt.clf()
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True)
plt.axis('equal')
pp.savefig()
pp.close()
示例14: _analyze
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def _analyze(recordIdList):
n_artists = get_n_artists()
n_days = get_n_days(isX=False, isTrain=False)
resultDict = dict()
for recordId in recordIdList:
resultDict[recordId] = getPredict(recordId)
pdf = PdfPages('../report/record.pdf')
for i in range(n_artists):
fig = plt.figure()
ax = plt.axes()
ax.xaxis.set_major_formatter(DateFormatter('%m%d'))
for recordId in recordIdList:
result = resultDict[recordId]
dsList = result[:,1]
firstDay = datetime.strptime(dsList[0], '%Y%m%d')
artist_id = result[i*n_days,0]
xData = np.arange(n_days) + date2num(firstDay)
yData = result[i*n_days:(i+1)*n_days,2]
plt.plot_date(xData, yData, fmt='-', label=recordId)
plt.legend(loc='best', shadow=True)
plt.xlabel('day')
plt.ylabel('plays')
plt.title(artist_id)
pdf.savefig(fig)
plt.close()
pdf.close()
示例15: plot_tica_and_clusters
# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import savefig [as 别名]
def plot_tica_and_clusters(component_j, transformed_data, clusterer, lag_time, component_i, label = "dot", active_cluster_ids = [], intermediate_cluster_ids = [], inactive_cluster_ids = [], tica_dir = ""):
trajs = np.concatenate(transformed_data)
plt.hexbin(trajs[:,component_i], trajs[:,component_j], bins='log', mincnt=1)
plt.xlabel("tIC %d" %(component_i + 1))
plt.ylabel('tIC %d' %(component_j+1))
centers = clusterer.cluster_centers_
indices = [j for j in range(0,len(active_cluster_ids),1)]
for i in [active_cluster_ids[j] for j in indices]:
center = centers[i,:]
if label == "dot":
plt.scatter([center[component_i]],[center[component_j]], marker='v', c='k', s=10)
else:
plt.annotate('%d' %i, xy=(center[component_i],center[component_j]), xytext=(center[component_i], center[component_j]),size=6)
indices = [j for j in range(0,len(intermediate_cluster_ids),5)]
for i in [intermediate_cluster_ids[j] for j in indices]:
center = centers[i,:]
if label == "dot":
plt.scatter([center[component_i]],[center[component_j]], marker='8', c='m', s=10)
else:
plt.annotate('%d' %i, xy=(center[component_i],center[component_j]), xytext=(center[component_i], center[component_j]),size=6)
indices = [j for j in range(0,len(inactive_cluster_ids),5)]
for i in [inactive_cluster_ids[j] for j in indices]:
center = centers[i,:]
if label == "dot":
plt.scatter([center[component_i]],[center[component_j]], marker='s', c='w', s=10)
else:
plt.annotate('%d' %i, xy=(center[component_i],center[component_j]), xytext=(center[component_i], center[component_j]),size=6)
pp = PdfPages("%s/c%d_c%d_clusters%d.pdf" %(tica_dir, component_i, component_j, np.shape(centers)[0]))
pp.savefig()
pp.close()
plt.clf()