当前位置: 首页>>代码示例>>Python>>正文


Python PdfPages.close方法代码示例

本文整理汇总了Python中matplotlib.backends.backend_pdf.PdfPages.close方法的典型用法代码示例。如果您正苦于以下问题:Python PdfPages.close方法的具体用法?Python PdfPages.close怎么用?Python PdfPages.close使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.backends.backend_pdf.PdfPages的用法示例。


在下文中一共展示了PdfPages.close方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: validation_report

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
    def validation_report(self):
        "provides a series of graphs to review a source's light curve. Prints to PDF file."

        #100MeV
        plot1 = self.flux_at_energy(self.flux_energy_list, 0, '100 Mev')
        
        #1000MeV
        plot2 = self.flux_at_energy(self.flux_energy_list, 5,'1000 Mev')
        #6309MeV
        plot3 = self.flux_at_energy(self.flux_energy_list, 9,'6309 Mev')
        #beginning time
        plot4 = self.flux_at_time(self.flux_energy_list, 0,'Start Time')
        #middle time
        plot5a = self.flux_at_time(self.flux_energy_list, int((self.ntstep)/4),'Quarter Time')
        plot5b = self.flux_at_time(self.flux_energy_list, int((self.ntstep)/2),'Middle Time')
        plot5c = self.flux_at_time(self.flux_energy_list, int(3.0*(self.ntstep)/4),'Three Quarter Time')
        #end time
        plot6 = self.flux_at_time(self.flux_energy_list, self.ntstep-1,'End Time')
                        
        from matplotlib.backends.backend_pdf import PdfPages

        file_name='simulator_plots'+self.timestr+'.pdf'
        print file_name
        pp = PdfPages(file_name)
        pp.savefig(plot1)
        pp.savefig(plot2)
        pp.savefig(plot3)
        pp.savefig(plot4)
        pp.savefig(plot5a)
        pp.savefig(plot5b)
        pp.savefig(plot5c)
        pp.savefig(plot6)

        pp.close()
开发者ID:dliss,项目名称:Simulator,代码行数:36,代码来源:Plotter.py

示例2: main

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
def main():
  data = scipy.io.loadmat('data.mat')
  x1 = data['x1'][0]
  x2 = data['x2'][0]
  n = len(x1)
  kl = [1, 7, 14, 28] # k = 14 may be an optimal
  x = np.arange(-6, 6.05, 0.05)

  fig = plt.figure()
  plt.rcParams['font.size'] = 10
  for i in range(len(kl)):
    k = kl[i]
    p1 = np.zeros(len(x))
    p2 = np.zeros(len(x))
    for j in range(len(x)):
      r1 = sorted(abs(x1 - x[j]))
      r2 = sorted(abs(x2 - x[j]))
      p1[j] = float(k) / (n * 2 * r1[k-1])
      p2[j] = float(k) / (n * 2 * r2[k-1])
    plt.subplot(2, 2, i+1)
    plt.plot(x, p1, label=r'$p(\mathbf{x} \mid c_1)$')
    plt.plot(x, p2, label=r'$p(\mathbf{x} \mid c_2)$')
    plt.legend(framealpha=0, fontsize=7)
    plt.title(r'$k = %d$' % k)
    plt.xlabel(r'$x$')
    plt.ylabel(r'$p(\mathbf{x} \mid c_i)$')
  plt.tight_layout()
  pp = PdfPages('knn.pdf')
  pp.savefig(fig)
  pp.close()
  plt.clf()
开发者ID:takuti,项目名称:utpr-2015,代码行数:33,代码来源:knn.py

示例3: make_lick_individual

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
def make_lick_individual(targetSN, w1, w2):
    """ Make maps for the kinematics. """
    filename = "lick_corr_sn{0}.tsv".format(targetSN)
    binimg = pf.getdata("voronoi_sn{0}_w{1}_{2}.fits".format(targetSN, w1, w2))
    intens = "collapsed_w{0}_{1}.fits".format(w1, w2)
    extent = calc_extent(intens)
    bins = np.loadtxt(filename, usecols=(0,), dtype=str).tolist()
    bins = np.array([x.split("bin")[1] for x in bins]).astype(int)
    data = np.loadtxt(filename, usecols=np.arange(25)+1).T
    labels = [r'Hd$_A$', r'Hd$_F$', r'CN$_1$', r'CN$_2$', r'Ca4227', r'G4300',
             r'Hg$_A$', r'Hg$_F$', r'Fe4383', r'Ca4455', r'Fe4531', r'C4668',
             r'H$_\beta$', r'Fe5015', r'Mg$_1$', r'Mg$_2$', r'Mg$_b$', r'Fe5270',
             r'Fe5335', r'Fe5406', r'Fe5709', r'Fe5782', r'Na$_D$', r'TiO$_1$',
             r'TiO$_2$']
    mag = "[mag]"
    ang = "[\AA]"
    units = [ang, ang, mag, mag, ang, ang,
             ang, ang, ang, ang, ang, ang,
             ang, ang, mag, mag, ang, ang,
             ang, ang, ang, ang, ang, mag,
             mag]
    lims = [[None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None],
            [None, None], [None, None], [None, None], [None, None]]
    pdf = PdfPages("figs/lick_sn{0}.pdf".format(targetSN))
    fig = plt.figure(1, figsize=(6.25,5))
    plt.subplots_adjust(bottom=0.12, right=0.97, left=0.09, top=0.96)
    plt.minorticks_on()
    ax = plt.subplot(111)
    ax.minorticks_on()
    plot_indices = np.arange(12,22)
    for i, vector in enumerate(data):
        if i not in plot_indices:
            continue
        print "Making plot for {0}...".format(labels[i])
        kmap = np.zeros_like(binimg)
        kmap[:] = np.nan
        for bin,v in zip(bins, vector):
            idx = np.where(binimg == bin)
            kmap[idx] = v
        vmin = lims[i][0] if lims[i][0] else np.median(vector) - 2 * vector.std()
        vmax = lims[i][1] if lims[i][1] else np.median(vector) + 2 * vector.std()
        m = plt.imshow(kmap, cmap="inferno", origin="bottom", vmin=vmin,
                   vmax=vmax, extent=extent, aspect="equal")
        make_contours()
        plt.minorticks_on()
        plt.xlabel("X [kpc]")
        plt.ylabel("Y [kpc]")
        plt.xlim(extent[0], extent[1])
        plt.ylim(extent[2], extent[3])
        cbar = plt.colorbar(m)
        cbar.set_label("{0} {1}".format(labels[i], units[i]))
        pdf.savefig()
        plt.clf()
    pdf.close()
    return
开发者ID:kadubarbosa,项目名称:hydramuse,代码行数:62,代码来源:maps.py

示例4: makeStackedBarGraph

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
def makeStackedBarGraph(coords_list, bar_labels_list, stack_label_list, title, axis_labels, file_name):    
    
    bar_width = 0.2
    step = 2000
    inds = np.arange(len(bar_labels_list))
    
    fig = mpl.figure.Figure(figsize=(15,10))
    canvas = FigureCanvas(fig)
    fig.suptitle(title)
    fig.subplots_adjust(wspace = 0.5, hspace = 0.5)
    
# for color bar
#     colorRange, colorTable = orr.generateColorRange(stack_label_list, step=step)
    
#     norm = Normalize(vmax = max(stack_label_list), vmin = min(stack_label_list), clip = True)
#     cmap_xvalues = norm(xrange(min(stack_label_list), max(stack_label_list), step))
#     cmap_xvalues[0] = 0.
#     cmap_xvalues[-1] = 1
#     cmap_list = [(val, c) for val, c in zip(cmap_xvalues, orr.generateColorRange(stack_label_list, raw=True, step=step)[1])]


    
#     cmap = LinearSegmentedColormap.from_list('mycmap', cmap_list)
#     sm = ScalarMappable(norm=norm, cmap = cmap)
#     sm.set_array(stack_label_list)
    
    colorRange, colorTable = orr.generateColors(stack_label_list, [0], step=step)
    
    ax = fig.add_subplot(2,2,1)
    ax.set_title(title, fontsize=28)
    ax.set_xlabel(axis_labels[0], fontsize=24)
    ax.set_ylabel(axis_labels[1], fontsize=24)

    pre = coords_list[0][1]
    bars = []
    bottom = np.zeros((len(coords_list[0][1]),))
    for i, (coords, stack_label) in enumerate(zip(coords_list, stack_label_list)):
#         if i == 0:
#             bar = ax.bar(inds, coords[1], color=colorTable[colorRange.index(coords[0])], align='center', linewidth=0)
#         else:
#             bar = ax.bar(inds, coords[1], color=colorTable[colorRange.index(coords[0])], align='center', bottom = bottom, linewidth=0)
        
        if i == 0:
            bar = ax.bar(inds, coords[1], color=colorTable[i], align='center', linewidth=0)
        else:
            bar = ax.bar(inds, coords[1], color=colorTable[i], align='center', bottom = bottom, linewidth=0)
            
        bars.append(bar)
        bottom = bottom + np.array(coords[1])    
    
    ax.set_xticks(inds)       
    ax.set_xticklabels(bar_labels_list, rotation=45, ha='right')
    ax.tick_params(axis='both', which='both', labelsize=18)
    ax.legend(bars, stack_label_list, loc=1, bbox_to_anchor=(1.2, 1), ncol=1, markerscale=0.2, fontsize=6)
#     fig.colorbar(sm)
    pdf = PdfPages(file_name)
    pdf.savefig(fig)
    pdf.close()
    
    print('Graphing Resource usage: {}kb'.format(getattr(resource.getrusage(resource.RUSAGE_SELF), 'ru_maxrss') / 1000))
开发者ID:xescape,项目名称:PopNet,代码行数:62,代码来源:NodeSummary.py

示例5: wrfile

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
 def wrfile(self):
     ((sff,eff,dis,his),wh) = self._sf()
     
     pp = PdfPages('SF of %s_%s.pdf' %(wh,self.nm))
     plt.figure()
     
     plt.clf()
     
     plt.errorbar(dis,sff,yerr=eff,markersize=4,fmt='o',ecolor='b',c='b',elinewidth=1.5,capsize=4)
     plt.xlabel('distance (pixel)')
     plt.ylabel('angle difference')
     plt.xlim(0,max(dis)+1)
     plt.ylim(0,90.)
     plt.title('%s: Structure Function for %s (Order %s)' %(self.nm,wh,int(self.od)))
     pp.savefig()
     
     bn = 5.
     for i in range(len(dis)):
         if dis[i] > 0:
             hist,bins = np.histogram(np.array(his[i]),range=(0.,90.),
                                      bins=90/bn,density=True) # 5 deg per bin, prob. density func.
             center = (bins[:-1] + bins[1:])/2
         
             plt.clf()
             plt.bar(center, hist, align='center',width=bn)
             plt.xlim(0,90)
             plt.xlabel('Angle difference (deg)')
             plt.ylabel('Normalized number of pairs in each bin (%s deg)' %bn)
             plt.title("Histogram at scale %s (pixel)" %round(dis[i],2))
             pp.savefig()
         
     pp.close()
开发者ID:Mipanox,项目名称:Astroph,代码行数:34,代码来源:SF_new.py

示例6: plot_distributions

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
def plot_distributions(distributions, bucket_pct, axes, out_file):
	x_max, y_max = axes
	pp = PdfPages(out_file)
	variances = sorted(distributions)
	subsamples = sorted(distributions[variances[-1]])
	if x_max == 0.:
		x_max = distributions[0][-1]
	bucket_width = x_max * bucket_pct
	bucket_boundaries = np.arange(0, x_max + bucket_width / 2., bucket_width)
	x_axis_points = np.arange(bucket_width / 2., x_max, bucket_width)
	for i,v in enumerate(variances):
		plt.figure(i)
		plt.xlabel("regret distribution")
		if v == 0:
			plt.title("true game")
			cum_dist = np.array([bisect(distributions[0], b) for b in \
								bucket_boundaries])
			plt.plot(x_axis_points, (cum_dist[1:] - cum_dist[:-1]) / \
					float(cum_dist[-1]), label="true game")
		else:
			plt.title("$\sigma \\approx$" +str(v))
			for s in subsamples:
				cum_dist = np.array([bisect(distributions[v][s], b) for b in \
									bucket_boundaries])
				plt.plot(x_axis_points, (cum_dist[1:] - cum_dist[:-1]) / \
						float(cum_dist[-1]), label=str(s)+" samples")
		plt.legend(loc="upper right", prop={'size':6})
		if y_max != 0.:
			plt.axis([0, x_max, 0, y_max])
		pp.savefig()
	pp.close()
开发者ID:bcassell,项目名称:GameAnalysis,代码行数:33,代码来源:plot_boot_res.py

示例7: plot_data_dict_1D

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
    def plot_data_dict_1D(self, results_path, file_n, data, timepoints):
        print 'plotting now...'
        pp = PdfPages(results_path+'/'+file_n)
        #nBins = 50
        cc = 0
        xmin, xmax = -1, 7
        x_grid = linspace(xmin, xmax, 1000)

        for tp in timepoints:
            dat = log10(1+data[tp][:,0])
            dat[isneginf(dat)] = 0
            print dat
            kde = st.gaussian_kde(dat, bw_method=0.2)
            pdf = kde.evaluate(x_grid)

            ax = plt.subplot(4, 5, cc + 1)
            ax.plot(x_grid, pdf, color='blue', alpha=0.5, lw=3)
            ax.set_xlim([-1, 7])

            #plt.hist( data[tp], nBins )
            #plt.xscale('log')
            cc += 1
        pp.savefig()
        plt.close()
        pp.close()
开发者ID:ucl-cssb,项目名称:ABC-Flow,代码行数:27,代码来源:flowOutput.py

示例8: compare_board_estimations

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
	def compare_board_estimations(esti_extrinsics, board, board_dim, \
								actual_boards, save_name=None):
		"""
		Plots true and estimated boards on the same figure
		Args:
			esti_extrinsics: dictionary, keyed by image number, values are Extrinsics
			board:
			board_dim: (board_width, board_height)
			actual_boards: list of dictionaries
			save_name: filename, string
		"""
		if save_name:
			pp = PdfPages(save_name)
		plt.clf()

		for i in xrange(len(actual_boards)):
			fig = plt.figure()
			ax = fig.add_subplot(111, projection='3d')

			act_board = actual_boards[i]
			aX, aY, aZ = util.board_dict2array(act_board, board_dim)
			ax.plot_wireframe(aX, aY, aZ, color='b')

			if i in esti_extrinsics:
				esti_loc = esti_extrinsics[i].trans_vec
				esti_board = util.move_board(board, esti_loc)
				eX, eY, eZ = util.board_dict2array(esti_board, board_dim)
				ax.plot_wireframe(eX, eY, eZ, color='r')

			if pp:
				pp.savefig()
			else:
				plt.show()
		if pp:
			pp.close()
开发者ID:Hawaiii,项目名称:AllAbtCamCalib,代码行数:37,代码来源:board.py

示例9: anal2pdf

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
def anal2pdf():


    pp = PdfPages('../../datafiles/jul14/analplots.pdf')
   
    
    fnames = [
    '../../datafiles/jul14/vsweep_10_1.h5',
    '../../datafiles/jul14/vsweep_10_1b.h5',
    '../../datafiles/jul14/vsweep_10_2.h5',
    '../../datafiles/jul14/vsweep_10_3.h5',
    '../../datafiles/jul14/vsweep_10_4.h5',
    '../../datafiles/jul14/vsweep_10_5.h5',
    '../../datafiles/jul14/vsweep_10_6.h5']
   
    
    for fn in fnames:
       anal_vsweep(fn)
       figure(1)
       suptitle('Voltage sweep, 5096MHz, raw phase(Y), time_samples(X)')
       f=gcf()
       f.savefig(pp,format='pdf')
    
       figure(3)
       suptitle('Voltage sweep, 5096MHz, radians(Y) vs mV(X)')
       f=gcf()
       f.savefig(pp,format='pdf')
    
    pp.close()
开发者ID:argonnexraydetector,项目名称:RoachFirmPy,代码行数:31,代码来源:analysis.py

示例10: complexAll

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
 def complexAll(self, f1=0., f2=0., amax=.16, nrows=1, ncols=1, antList=allAnts ) :
   pyplot.ioff()
   pp = PdfPages( 'ComplexLeaks.pdf' )
   scale = 10./math.sqrt(ncols*nrows)
   if f1 == 0. :
     [f1, f2] = LkSet.xlimits( self )          # default is to find freq limits in the data
   print "frequency limits: %.3f - %.3f GHz" % (f1,f2)
   ymin = -1.*amax
   ymax = amax
   npanel = 0
   for ant in antList :
     npanel = npanel + 1
     if npanel > nrows * ncols :
       npanel = 1
       pyplot.clf()
     p = pyplot.subplot(nrows, ncols, npanel, aspect='equal')    # DL,DR in one panel
     p.tick_params( axis='both', which='major', labelsize=scale )
     p.axis( [ymin, ymax, ymin, ymax] )
     p.grid(True)
     for Leak in self.LeakList :
       if Leak.ant == ant :
         print "plotting DR and DL for antenna %d" % ant
         Leak.plotComplex( p, f1, f2 ) 
     #pyplot.title("C%d DR (circles, solid) and DL (diamonds, dashed)" % ant, fontdict={'fontsize': scale})
     if (npanel == nrows*ncols) or (ant == antList[-1] ) :
       pyplot.savefig( pp, format='pdf' )
   pp.close()
开发者ID:richardplambeck,项目名称:tadpol,代码行数:29,代码来源:ooLeak.py

示例11: write_pressure_graph

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
    def write_pressure_graph(self):
        P.xlabel("Temperature")
        P.ylabel("Pressure")
        P.title("Pressure per Temperature")
        P.axis([0.0,self.temp_points[-1]+10., 0.0,self.pressure_points[-1]+1])
        ax = P.gca()
        ax.set_autoscale_on(False)

        popt,pcov = curve_fit(fit,self.temp_points,self.pressure_points)
        y_fit = [popt[0]*x+popt[1] for x in self.temp_points]
        y_fit.insert(0, popt[1])
        fit_x_points = self.temp_points[:]
        fit_x_points.insert(0,0.)

        pp = PdfPages(str(SCREEN_SIZE)+"_"+str(N)+".pdf")
        P.plot(self.temp_points, self.pressure_points, "o", fit_x_points, y_fit, "--")
        #P.savefig()
        #P.plot(
        #pp.savefig()
        #print(self.pressure_points)
        #print(y_fit)
        #print(fit_x_points)
        #print(y_fit)
        pp.savefig()
        pp.close()
开发者ID:raymontag,项目名称:mdpy,代码行数:27,代码来源:problem1.py

示例12: readCurvesFromFileCallback

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
def readCurvesFromFileCallback():

    # Ask for input file
    _filename = askForInputFile(fileFilter="*.cur")
    if _filename == "":
        return

    # Load data from file
    [_readCurves, _readVoltages] = loadDataFromFile(_filename)
    for i in range(0, len(_readVoltages)):
        _voltages = []
        _currents = []
        for j in range(0, len(_readCurves[i])):
            _voltages.extend([_readCurves[i][j][0]])
            _currents.extend([_readCurves[i][j][1]])

    # Plot read data
    onlyFilename = _filename.split("/")[-1]
    plotCurves(_readCurves, _readVoltages, onlyFilename, interpolate=True)

    # Ask if wants to save plot to PDF file
    d = YesNoDialog(rootWindowHandler, 'Save plot to PDF file?', 'Yes', 'No')
    rootWindowHandler.wait_window(d.top)
    if not yesNoReturnedValue:
        return
    _fileTypes = '*.*'
    _filename = askForOutputFilename(_fileTypes)
    if _filename == "":
        return
    _filename = fixExtensionOfFilename(_filename, 'pdf')
    pp = PdfPages(_filename)
    plot.savefig(pp, format='pdf')
    pp.close()
    print 'Saved curves to PDF file: "%s"' % _filename
开发者ID:ignaciodsimon,项目名称:SilentSpeaker,代码行数:36,代码来源:graphic_interface.py

示例13: plot_weights_nircam

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
def plot_weights_nircam():
    inst = webbpsf.NIRCam()
    filtlist_W = [f for f in inst.filter_list if f[-1] == 'W']
    filtlist_M = [f for f in inst.filter_list if f[-1] == 'M']
    filtlist_N = [f for f in inst.filter_list if f[-1] == 'N' or f[-1] =='2']

    #filtlist_C = [f for f in inst.filter_list if f[-1] == 'C']


    from matplotlib.backends.backend_pdf import PdfPages
    pdf=PdfPages('weights_nircam.pdf')

    plotweights('nircam', filtlist=filtlist_W)
    Mstar = pysynphot.Icat('ck04models',3500,0.0,2.0)
    plotweights('nircam', filtlist=filtlist_W, overplot=True, ls='--', source=Mstar)
    pdf.savefig()


    plotweights('nircam', filtlist=filtlist_M)
    Mstar = pysynphot.Icat('ck04models',3500,0.0,2.0)
    plotweights('nircam', filtlist=filtlist_M, overplot=True, ls='--', source=Mstar)
    pdf.savefig()

    plotweights('nircam', filtlist=filtlist_N)
    Mstar = pysynphot.Icat('ck04models',3500,0.0,2.0)
    plotweights('nircam', filtlist=filtlist_N, overplot=True, ls='--', source=Mstar)
    pdf.savefig()


    pdf.close()
开发者ID:astrocaribe,项目名称:webbpsf,代码行数:32,代码来源:test_synphot.py

示例14: plot_miri_comparison

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
def plot_miri_comparison():

    inst = webbpsf.MIRI()
    filtlist_W = [f for f in inst.filter_list if f[-1] == 'W']
    filtlist_C = [f for f in inst.filter_list if f[-1] != 'W']

    from matplotlib.backends.backend_pdf import PdfPages
    pdf=PdfPages('weights_miri_comparison.pdf')


    for filts in [filtlist_W, filtlist_C]:

        try:
            os.unlink('/Users/mperrin/software/webbpsf/data/MIRI/filters')
        except: 
            pass
        os.symlink('/Users/mperrin/software/webbpsf/data/MIRI/real_filters', '/Users/mperrin/software/webbpsf/data/MIRI/filters')
        plotweights('miri', filtlist=filts)

        os.unlink('/Users/mperrin/software/webbpsf/data/MIRI/filters')
        os.symlink('/Users/mperrin/software/webbpsf/data/MIRI/fake_filters', '/Users/mperrin/software/webbpsf/data/MIRI/filters')
        plotweights('miri', filtlist=filts, overplot=True, ls='--')
        P.draw()
        pdf.savefig()

    pdf.close()
开发者ID:astrocaribe,项目名称:webbpsf,代码行数:28,代码来源:test_synphot.py

示例15: err_histogram

# 需要导入模块: from matplotlib.backends.backend_pdf import PdfPages [as 别名]
# 或者: from matplotlib.backends.backend_pdf.PdfPages import close [as 别名]
def err_histogram(output, basedir='.',bins=10, field='MLWA', err='dMLWA', suffix='coef',
                  label=r'$\delta\tau_{L,\mathrm{fit}}/\tau_L$',exclude=exclude, ymax=90):

    ratio_list = []

    for p in range(6):
        coef = '{}/NGC_891_P{}_bin30_allz2.{}.fits'.format(basedir,p+1,suffix)
        print coef
        c = pyfits.open(coef)[1].data
        tmp = c[err]
        if field == 'TAUV':
            tmp *= 1.086
        else:
            tmp /= c[field]            
        tmp = np.delete(tmp,np.array(exclude[p]) - 1)
        ratio_list.append(tmp)

    ratio = np.hstack(ratio_list)
    ratio = ratio[ratio == ratio]
    ratio = ratio[np.where(ratio < 0.8)[0]]
    ax = plt.figure().add_subplot(111)
    ax.set_xlabel(label)
    ax.set_ylabel(r'$N$')
    ax.hist(ratio, bins=bins, histtype='step', color='k')
    ax.set_xlim(0,0.52)
    ax.set_xticks([0,0.1,0.2,0.3,0.4,0.5])
    ax.set_ylim(0,ymax)
    ax.set_yticks(range(0,int(ymax/10)*10+10,int(int(ymax/10)/4)*10))

    pp = PDF(output)
    pp.savefig(ax.figure)
    pp.close()
    plt.close(ax.figure)

    return
开发者ID:eigenbrot,项目名称:snakes,代码行数:37,代码来源:plot_allZ2.py


注:本文中的matplotlib.backends.backend_pdf.PdfPages.close方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。