本文整理汇总了Python中matplotlib.backends.backend_agg.FigureCanvasAgg.print_png方法的典型用法代码示例。如果您正苦于以下问题:Python FigureCanvasAgg.print_png方法的具体用法?Python FigureCanvasAgg.print_png怎么用?Python FigureCanvasAgg.print_png使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.backends.backend_agg.FigureCanvasAgg
的用法示例。
在下文中一共展示了FigureCanvasAgg.print_png方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: category_bar_charts
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def category_bar_charts():
sns.set(style="whitegrid")
sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 2.5})
f, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 7), sharex=False)
retirement_sums = sorted(retirement_class_sums(), reverse=True)
x = [a[1] for a in retirement_sums]
y = [a[0] for a in retirement_sums]
sns.barplot(x, y, palette="YlOrRd_d", ax=ax1)
ax1.set_ylabel("By Category")
account_type_sums = sorted(account_by_type_sums(), reverse=True)
x = [a[1] for a in account_type_sums]
y = [a[0] for a in account_type_sums]
sns.barplot(x, y, palette="BuGn_d", ax=ax2)
ax2.set_ylabel("By Category")
account_owner_sums = sorted(account_by_owner_sums(), reverse=True)
x = [a[1] for a in account_owner_sums]
y = [a[0] for a in account_owner_sums]
sns.barplot(x, y, palette="Blues_d", ax=ax3)
ax3.set_ylabel("By Owner")
sns.despine(left=True)
f.tight_layout()
canvas = FigureCanvas(plt.gcf())
png_output = io.BytesIO()
canvas.print_png(png_output)
response=make_response(png_output.getvalue())
response.headers['Content-Type'] = 'image/png'
return response
示例2: graph_prices
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def graph_prices(x, y, gname):
'''make a plot of the prices over time for a specific game'
x is be the dates of the bins
y is the prices
gname is the name of the game
'''
x_list = list(x)
x_dt = [datetime.fromtimestamp(xx) for xx in x_list]
fig=Figure(facecolor='white')
ax=fig.add_subplot(111)
ax.plot(x_dt,y,'r-')
ax.set_ylim([0,np.max(y) + np.max(y) * 0.10])
#ax.set_title(gname)
#ax.set_axis_bgcolor('red')
formatter = FuncFormatter(money_format)
ax.yaxis.set_major_formatter(formatter)
#fig.autofmt_xdate()
#xfmt = md.DateFormatter('%Y-%m-%d %H:%M:%S')
#ax.xaxis.set_major_formatter(xfmt)
ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d'))
fig.autofmt_xdate()
canvas=FigureCanvas(fig)
png_output = StringIO.StringIO()
canvas.print_png(png_output)
response=make_response(png_output.getvalue())
response.headers['Content-Type'] = 'image/png'
return response
示例3: plot
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def plot(title='title',xlab='x',ylab='y',mode='plot',
data={'xxx':[(0,0),(1,1),(1,2),(3,3)],
'yyy':[(0,0,.2,.2),(2,1,0.2,0.2),(2,2,0.2,0.2),(3,3,0.2,0.3)]}):
fig=Figure()
fig.set_facecolor('white')
ax=fig.add_subplot(111)
if title: ax.set_title(title)
if xlab: ax.set_xlabel(xlab)
if ylab: ax.set_ylabel(ylab)
legend=[]
keys=sorted(data)
for key in keys:
stream = data[key]
(x,y)=([],[])
for point in stream:
x.append(point[0])
y.append(point[1])
if mode=='plot':
ell=ax.plot(x, y)
legend.append((ell,key))
if mode=='hist':
ell=ax.hist(y,20)
if legend:
ax.legend([x for (x,y) in legend], [y for (x,y) in legend],
'upper right', shadow=True)
canvas=FigureCanvas(fig)
stream=cStringIO.StringIO()
canvas.print_png(stream)
return stream.getvalue()
示例4: plot_activity
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def plot_activity(values):
daysFmt = DateFormatter("%d-%B %H:00")
fig=Figure()
ax=fig.add_subplot(111)
times = values.keys()
times.sort()
number_found = [values[key] for key in times]
ax.plot_date(times, number_found, '-')
#assert 0, '%s'%(values)
# format the ticks
ax.xaxis.set_major_locator(HourLocator(byhour=range(0,24,4)))
ax.xaxis.set_major_formatter(daysFmt)
ax.autoscale_view()
ax.grid(True)
ax.set_title('All devices')
fig.autofmt_xdate()
canvas=FigureCanvas(fig)
response=HttpResponse(content_type='image/png')
canvas.print_png(response)
return response
示例5: figure_to_response
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def figure_to_response(f):
""" Creates a png image to be displayed in an html file """
canvas = FigureCanvasAgg(f)
response = HttpResponse(content_type='image/png')
canvas.print_png(response)
matplotlib.pyplot.close(f)
return response
示例6: bar_plot
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def bar_plot(d, labels):
colors = itertools.cycle(['b', 'g', 'r', 'c', 'm', 'y', 'k'])
fig=Figure(figsize=(8, 6), dpi=200)
fig.set_facecolor('white')
fig.subplots_adjust(bottom=0.30)
ax=fig.add_subplot(111)
ax.set_title("")
ax.set_ylabel('Factor values')
#ax.grid(which='major')
bottom = None
for col in d.columns:
if bottom is None:
bottom = 0*d[col]
ax.bar(range(len(d[col])), d[col], align='center', bottom=bottom,
label=labels[col], color=colors.next(), alpha=0.6)
bottom += d[col]
ax.set_xticks(range(len(d[col])))
ax.set_xlim([-0.5, len(d[col])])
ax.set_xticklabels([unicode(el) for el in d[col].index], size='x-small',
rotation='vertical')
leg = ax.legend(loc='best', fancybox=True, prop={'size':9})
leg.get_frame().set_alpha(0.5)
canvas=FigureCanvas(fig)
stream=cStringIO.StringIO()
canvas.print_png(stream, bbox_inches='tight')
return stream.getvalue()
示例7: plot_demo
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def plot_demo():
import numpy as np
import matplotlib
matplotlib.use('Agg')
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
mu, sigma = 100, 15
x = mu + sigma*np.random.randn(10000)
# the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='green', alpha=0.75)
# add a 'best fit' line
y = mlab.normpdf( bins, mu, sigma)
l = plt.plot(bins, y, 'r--', linewidth=1)
plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
# Write to the canvas
fig = plt.gcf()
fig.set_size_inches(6,5)
canvas = FigureCanvas(fig)
output = StringIO.StringIO()
canvas.print_png(output)
response = make_response(output.getvalue())
response.mimetype = 'image/png'
return response
示例8: simple
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def simple(request):
import random
import django
import datetime
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from matplotlib.dates import DateFormatter
fig = Figure(figsize=(5, 5), dpi=80)
ax = fig.add_subplot(111)
x = []
y = []
now = datetime.datetime.now()
delta = datetime.timedelta(days=1)
for i in range(10):
x.append(now)
now += delta
y.append(random.randint(0, 1000))
ax.plot_date(x, y, "-")
ax.xaxis.set_major_formatter(DateFormatter("%Y-%m-%d"))
fig.autofmt_xdate()
canvas = FigureCanvas(fig)
response = django.http.HttpResponse(content_type="image/png")
canvas.print_png(response)
return response
示例9: get
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def get(self, req, *args, **kwargs):
json = 'application/json' in req.META.get('HTTP_ACCEPT')
if not json and not Figure:
raise Http404("Can't generate image")
context = self.get_context_data(**kwargs)
data = self.data_from_context(context)
if json:
# convert to list of lists
data[:,0] = num2epoch(data[:,0])
data[:,0] *= 1000 # to ms
ret = [None]*data.shape[0]
for i in range(data.shape[0]):
ret[i] = list(data[i,:])
return JsonResponse({'data':ret})
tz = get_current_timezone()
fig = Figure(dpi=96, figsize=(4,3))
ax = fig.add_subplot(111)
ax.plot_date(data[:,0], data[:,1])
ax.set(**self.set_axis)
ax.xaxis.set_major_formatter(DateFormatter('%H:%M:%S', tz=tz))
fig.autofmt_xdate()
canva = FigureCanvas(fig)
resp = HttpResponse(content_type='image/png')
canva.print_png(resp)
return resp
示例10: ScatterPlotData
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def ScatterPlotData(request, GeneticDataRecords, GeneticAttributeNameA, GeneticAttributeNameB, ClusterCutOff, PlotXLabel, PlotYLabel, PlotTitle):
"""
This plotting option is for creating a scatter plot.
"""
plt.xlabel(PlotXLabel)
plt.ylabel(PlotYLabel)
plt.title(PlotTitle)
fig = Figure(figsize=[8,8])
ax = fig.add_subplot(1,1,1)
# A color swtich is added below for any data past the threshold inputted into this method.
for GeneticAttributeEntry in GeneticDataRecords:
if (float(getattr(GeneticAttributeEntry, GeneticAttributeNameA)) < float(ClusterCutOff)):
ax.scatter(float(getattr(GeneticAttributeEntry, GeneticAttributeNameA)),float(getattr(GeneticAttributeEntry, GeneticAttributeNameB)),c="blue")
else:
ax.scatter(float(getattr(GeneticAttributeEntry, GeneticAttributeNameA)),float(getattr(GeneticAttributeEntry, GeneticAttributeNameB)),c="red")
canvas = FigureCanvasAgg(fig)
ax.set_xlabel(PlotXLabel)
ax.set_ylabel(PlotYLabel)
ax.set_title(PlotTitle)
# write image data to a string buffer and get the PNG image bytes
buf = cStringIO.StringIO()
canvas.print_png(buf)
data = buf.getvalue()
img = Image.open(StringIO.StringIO(data))
response = HttpResponse(mimetype="image/png")
img.save(response, 'PNG')
return (response)
示例11: PlotData
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def PlotData(request, GeneticDataRecords, GeneticAttributeName, PlotXLabel, PlotYLabel, PlotTitle):
"""
This is the standard genetic module plotting option and a histogram is created. The plot is written to
a string buffer and later rendered as a png image which is returned in a html response. The image is not
needed to be saved as a file in the hard disk each time it is created.
"""
AttributeGroupGeneticDataRecords = []
for RecordEntry in GeneticDataRecords:
AttributeGroupGeneticDataRecords.append(float(getattr(RecordEntry, GeneticAttributeName)))
plt.xlabel(PlotXLabel)
plt.ylabel(PlotYLabel)
plt.title(PlotTitle)
fig = Figure(figsize=[8,8])
ax = fig.add_subplot(1,1,1)
ax.hist(AttributeGroupGeneticDataRecords, 23, normed=1, facecolor='green', alpha=0.75)
canvas = FigureCanvasAgg(fig)
ax.set_xlabel(PlotXLabel)
ax.set_ylabel(PlotYLabel)
ax.set_title(PlotTitle)
# write image data to a string buffer and get the PNG image bytes
buf = cStringIO.StringIO()
canvas.print_png(buf)
data = buf.getvalue()
img = Image.open(StringIO.StringIO(data))
response = HttpResponse(mimetype="image/png")
img.save(response, 'PNG')
return (response)
示例12: searchstringPieChart
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def searchstringPieChart(request):
page_title='Search String Pie Chart'
year=stat.getYear()
searchList = list(SearchTerm.objects.values_list('q', flat=True))
search_string = ' '.join(searchList)
result = Counter(search_string.split()).most_common(10)
searchDict = {}
for key,val in result:
searchDict[key] = val
fig=Figure()
ax=fig.add_subplot(111)
title='Top Ten search string submitted by user ({0})'.format(year)
fig.suptitle(title, fontsize=14)
try:
x = searchDict.values()
labels = searchDict.keys()
ax.pie(x, labels=labels);
except ValueError:
pass
canvas = FigureCanvas(fig)
response = HttpResponse(content_type='image/png')
canvas.print_png(response)
return response
示例13: displayrankedItemwithBidsPieChart
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def displayrankedItemwithBidsPieChart(request):
page_title='Pie Chart on Ranked Item'
year=stat.getYear()
itemBidDict, bidtotalSum = stat.createItemIDBidCountDict()
top_ten_dict = stat.sortedItemDictionary(itemBidDict)
itemobjDict = {}
for key,value in top_ten_dict:
itemObj = get_object_or_404(Item, pk=key)
itemobjDict[itemObj.name] = value
fig=Figure()
ax=fig.add_subplot(111)
title='Top Ten ranked items with the highest bids ({0})'.format(year)
fig.suptitle(title, fontsize=14)
try:
x = itemobjDict.values()
labels = itemobjDict.keys()
ax.pie(x, labels=labels);
except ValueError:
pass
canvas = FigureCanvas(fig)
response = HttpResponse(content_type='image/png')
canvas.print_png(response)
return response
示例14: simple
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def simple():
import datetime
import StringIO
import random
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from matplotlib.dates import DateFormatter
fig=Figure()
ax=fig.add_subplot(111)
x=[]
y=[]
now=datetime.datetime.now()
delta=datetime.timedelta(days=1)
for i in range(10):
x.append(now)
now+=delta
y.append(random.randint(0, 1000))
ax.plot_date(x, y, '-')
ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d'))
fig.autofmt_xdate()
canvas=FigureCanvas(fig)
png_output = StringIO.StringIO()
canvas.print_png(png_output)
data = png_output.getvalue().encode('base64')
data_url = 'data:image/png;base64,{}'.format(urllib.quote(data.rstrip('\n')))
response=make_response(png_output.getvalue())
response.headers['Content-Type'] = 'image/png'
return response
示例15: show_temperature_graph
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_png [as 别名]
def show_temperature_graph(response, siteLocation=None):
import random
import os
import tempfile
os.environ['MPLCONFIGDIR'] = tempfile.mkdtemp()
import django
import datetime
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from matplotlib.dates import DateFormatter
fig=Figure()
ax=fig.add_subplot(111)
x=[]
y=[]
now=datetime.datetime.now()
delta=datetime.timedelta(days=1)
for i in range(10):
x.append(now)
now+=delta
y.append(random.randint(0, 1000))
ax.plot_date(x, y, '-')
ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d'))
fig.autofmt_xdate()
canvas=FigureCanvas(fig)
response=django.http.HttpResponse(content_type='image/png')
canvas.print_png(response)
return response