本文整理汇总了Python中matplotlib.backends.backend_agg.FigureCanvasAgg.print_figure方法的典型用法代码示例。如果您正苦于以下问题:Python FigureCanvasAgg.print_figure方法的具体用法?Python FigureCanvasAgg.print_figure怎么用?Python FigureCanvasAgg.print_figure使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.backends.backend_agg.FigureCanvasAgg
的用法示例。
在下文中一共展示了FigureCanvasAgg.print_figure方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: lambert_conformal
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def lambert_conformal(request):
import matplotlib
from mpl_toolkits.basemap import Basemap
import numpy as np
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
width = float(request.GET.get('width', 6000000))
height = float(request.GET.get('height', 4500000))
lat = float(request.GET.get('lat',-7))
lon = float(request.GET.get('lon',107))
true_lat1 = float(request.GET.get('true_lat1',5))
true_lat2 = float(request.GET.get('true_lat2',5))
m = Basemap(width=width,height=height,
rsphere=(6378137.00,6356752.3142),\
resolution=None,projection='lcc',\
lat_1=true_lat1,lat_2=true_lat2,lat_0=lat,lon_0=lon)
fig = Figure()
canvas = FigureCanvas(fig)
m.ax = fig.add_axes([0, 0, 1, 1])
m.drawlsmask(land_color='gray',ocean_color='white',lakes=True)
m.drawparallels(np.arange(-90.,91.,30.), color='black')
m.drawmeridians(np.arange(-180.,181.,60.), color='black')
x, y = m(lon, lat)
m.plot(x, y, 'ro')
response = HttpResponse(content_type='image/png')
canvas.print_figure(response, dpi=100)
return response
示例2: plotSolarRadiationAgainstMonth
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def plotSolarRadiationAgainstMonth(filename):
trainRowReader = csv.reader(open(filename, 'rb'), delimiter=',')
month_most_common_list = []
Solar_radiation_64_list = []
for row in trainRowReader:
month_most_common = row[3]
Solar_radiation_64 = row[6]
month_most_common_list.append(month_most_common)
Solar_radiation_64_list.append(Solar_radiation_64)
#convert all elements in the list to float while skipping the first element for the 1st element is a description of the field.
month_most_common_list = [float(i) for i in prepareList(month_most_common_list)[1:] ]
Solar_radiation_64_list = [float(i) for i in prepareList(Solar_radiation_64_list)[1:] ]
fig=Figure()
ax=fig.add_subplot(111)
title='Scatter Diagram of solar radiation against month of the year'
ax.set_xlabel('Most common month')
ax.set_ylabel('Solar Radiation')
fig.suptitle(title, fontsize=14)
try:
ax.scatter(month_most_common_list, Solar_radiation_64_list)
#it is possible to make other kind of plots e.g bar charts, pie charts, histogram
except ValueError:
pass
canvas = FigureCanvas(fig)
canvas.print_figure('solarRadMonth.png',dpi=500)
示例3: save
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def save(self, name, log=False, vrange=None):
if self.imdict['X'].sum() == 0.0 and log:
warn("can't plot {}, in log mode".format(name), RuntimeWarning,
stacklevel=2)
return
fig = Figure(figsize=(8,6))
canvas = FigureCanvas(fig)
ax = fig.add_subplot(1,1,1)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", "5%", pad="1.5%")
if log:
norm=LogNorm()
else:
norm=Normalize()
if vrange:
self.imdict['vmin'], self.imdict['vmax'] = vrange
im = ax.imshow(norm=norm,**self.imdict)
cb_dict = {'cax':cax}
if log:
cb_dict['ticks'] = LogLocator(10, np.arange(0.1,1,0.1))
cb_dict['format'] = LogFormatterMathtext(10)
try:
cb = plt.colorbar(im, **cb_dict)
except ValueError:
print self.imdict['X'].sum()
raise
ax.set_xlabel(self.x_label, x=0.98, ha='right')
ax.set_ylabel(self.y_label, y=0.98, ha='right')
if self.cb_label:
cb.set_label(self.cb_label, y=0.98, ha='right')
canvas.print_figure(name, bbox_inches='tight')
示例4: make_1d_plots
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def make_1d_plots(in_file_name, out_dir, ext, b_eff=0.1, reject='U'):
textsize=_text_size
taggers = {}
with h5py.File(in_file_name, 'r') as in_file:
for tag in ['gaia', mv1uc_name, 'jfc', 'jfit']:
taggers[tag] = get_c_vs_u_const_beff(
in_file, tag, b_eff=b_eff, reject=reject)
fig = Figure(figsize=_fig_size)
canvas = FigureCanvas(fig)
ax = fig.add_subplot(1,1,1)
for tname, (vc, vu) in taggers.items():
label, color = leg_labels_colors.get(tname, (tname, 'k'))
ax.plot(vc, vu, label=label, color=color, linewidth=_line_width)
leg = ax.legend(title='$b$-rejection = {}'.format(1/b_eff),
prop={'size':textsize})
leg.get_title().set_fontsize(textsize)
setup_1d_ctag_legs(ax, textsize, reject=reject)
fig.tight_layout(pad=0, h_pad=0, w_pad=0)
if not isdir(out_dir):
os.mkdir(out_dir)
file_name = '{}/{rej}Rej-vs-cEff-brej{}{}'.format(
out_dir, int(1.0/b_eff), ext, rej=reject.lower())
canvas.print_figure(file_name, bbox_inches='tight')
示例5: _plot_baseline_subtracted
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def _plot_baseline_subtracted(self, x, y, raw=True, baseline=True):
"""Plot the baseline-subtracted data"""
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
figure = Figure()
canvas = FigureCanvas(figure)
axes1 = figure.add_subplot(1, 1, 1, axisbg='whitesmoke')
# Points for fit
axes1.plot(x, y, 'o', color='deepskyblue', markersize=2, alpha=1, label='Baseline-subtracted data')
axes1.set_xlabel('time (s)')
axes1.set_ylabel(r' corr. differential power ($\mu$cal / s)')
axes1.legend(loc='upper center', bbox_to_anchor=(0.2, 0.95), ncol=1, fancybox=True, shadow=True, markerscale=3,
prop={'size': 6})
if raw:
axes2 = axes1.twinx()
axes2.plot(x, self.differential_power, 'o', color='gray', markersize=2, alpha=.3, label='Raw data')
axes2.set_ylabel(r'raw differential power ($\mu$cal / s)')
axes2.legend(loc='upper center', bbox_to_anchor=(0.8, 0.95), ncol=1, fancybox=True, shadow=True,
markerscale=3,
prop={'size': 6})
if baseline:
axes2.plot(x, self.baseline_power, '-', color='black', alpha=.3, label='baseline')
axes1.set_title(self.data_filename)
canvas.print_figure(self.name + '-subtracted.png', dpi=500)
示例6: plot_normprob
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def plot_normprob(d, snrs, outroot):
""" Normal quantile plot compares observed SNR to expectation given frequency of occurrence.
Includes negative SNRs, too.
"""
outname = os.path.join(d["workdir"], "plot_" + outroot + "_normprob.png")
# define norm quantile functions
Z = lambda quan: n.sqrt(2) * erfinv(2 * quan - 1)
quan = lambda ntrials, i: (ntrials + 1 / 2.0 - i) / ntrials
# calc number of trials
npix = d["npixx"] * d["npixy"]
if d.has_key("goodintcount"):
nints = d["goodintcount"]
else:
nints = d["nints"]
ndms = len(d["dmarr"])
dtfactor = n.sum([1.0 / i for i in d["dtarr"]]) # assumes dedisperse-all algorithm
ntrials = npix * nints * ndms * dtfactor
logger.info("Calculating normal probability distribution for npix*nints*ndms*dtfactor = %d" % (ntrials))
# calc normal quantile
if len(n.where(snrs > 0)[0]):
snrsortpos = n.array(sorted(snrs[n.where(snrs > 0)], reverse=True)) # high-res snr
Zsortpos = n.array([Z(quan(ntrials, j + 1)) for j in range(len(snrsortpos))])
logger.info("SNR positive range = (%.1f, %.1f)" % (snrsortpos[-1], snrsortpos[0]))
logger.info("Norm quantile positive range = (%.1f, %.1f)" % (Zsortpos[-1], Zsortpos[0]))
if len(n.where(snrs < 0)[0]):
snrsortneg = n.array(sorted(n.abs(snrs[n.where(snrs < 0)]), reverse=True)) # high-res snr
Zsortneg = n.array([Z(quan(ntrials, j + 1)) for j in range(len(snrsortneg))])
logger.info("SNR negative range = (%.1f, %.1f)" % (snrsortneg[-1], snrsortneg[0]))
logger.info("Norm quantile negative range = (%.1f, %.1f)" % (Zsortneg[-1], Zsortneg[0]))
# plot
fig3 = plt.Figure(figsize=(10, 10))
ax3 = fig3.add_subplot(111)
if len(n.where(snrs < 0)[0]) and len(n.where(snrs > 0)[0]):
logger.info("Plotting positive and negative cands")
ax3.plot(snrsortpos, Zsortpos, "k.")
ax3.plot(snrsortneg, Zsortneg, "kx")
refl = n.linspace(
min(snrsortpos.min(), Zsortpos.min(), snrsortneg.min(), Zsortneg.min()),
max(snrsortpos.max(), Zsortpos.max(), snrsortneg.max(), Zsortneg.max()),
2,
)
elif len(n.where(snrs > 0)[0]):
logger.info("Plotting positive cands")
refl = n.linspace(min(snrsortpos.min(), Zsortpos.min()), max(snrsortpos.max(), Zsortpos.max()), 2)
ax3.plot(snrsortpos, Zsortpos, "k.")
elif len(n.where(snrs < 0)[0]):
logger.info("Plotting negative cands")
refl = n.linspace(min(snrsortneg.min(), Zsortneg.min()), max(snrsortneg.max(), Zsortneg.max()), 2)
ax3.plot(snrsortneg, Zsortneg, "kx")
ax3.plot(refl, refl, "k--")
ax3.set_xlabel("SNR")
ax3.set_ylabel("Normal quantile SNR")
canvas = FigureCanvasAgg(fig3)
canvas.print_figure(outname)
示例7: draw_ctag_rejrej
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def draw_ctag_rejrej(in_file, out_dir, ext='.pdf'):
"""
Basic heatmap of efficiency vs two rejections.
"""
fig = Figure(figsize=_fig_size)
canvas = FigureCanvas(fig)
ax = fig.add_subplot(1,1,1)
ds = in_file['gaia/all']
eff_array, extent = _get_arr_extent(ds)
label_rejrej_axes(ax, ds)
im = ax.imshow(eff_array.T, extent=extent,
origin='lower', aspect='auto')
ax.set_xscale('log')
ax.set_yscale('log')
ax.grid(which='both')
# add_contour(ax,ds)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
cb = Colorbar(ax=cax, mappable=im)
out_name = '{}/rejrej{}'.format(out_dir, ext)
# ignore complaints about not being able to log scale images
with warnings.catch_warnings():
warnings.simplefilter("ignore")
canvas.print_figure(out_name, bbox_inches='tight')
示例8: plotting
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def plotting(zic1,comparators):
"""docstring for plotting"""
from mapping import probe_map
for key in comparators.keys():
corr = pearsonr(zic1, comparators[key])
#the string of correlation stats
s = 'R = '+str(corr[0])+'\nP = '+str(corr[1])
# Create a figure with size 6 x 6 inches.
fig = Figure(figsize=(6,6))
# Create a canvas and add the figure to it.
canvas = FigureCanvas(fig)
# Create a subplot.
ax = fig.add_subplot(111)
# Set the title.
ax.set_title(s,fontsize=10)
# Set the X Axis label.
ax.set_xlabel('Samples',fontsize=8)
# Set the Y Axis label.
ax.set_ylabel('Normalized Expression',fontsize=8)
# Display Grid.
ax.grid(True,linestyle='-',color='0.75')
# Generate the Scatter Plot.
ax.plot(range(1,25), zic1, 'go-', label=probe_map['206373_at'])
ax.plot(range(1,25), comparators[key], 'r^-', label=probe_map[key])
# add the legend
ax.legend()
#ax.text(0.1,max(zic1),s)
# Save the generated Scatter Plot to a PNG file.
canvas.print_figure('correlations/'+key+'.png',dpi=500)
示例9: plot_jumps
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def plot_jumps(stream, datafilename, line_name):
# L1 and L2 data is collected at a rate of 6.0064028254118895 times per second
# HF spectra data is collected at a rate of 0.9375005859378663 times per second
median_stream = ndimage.filters.median_filter(stream, 6.0064028254118895) # smooth with width 1 second of data
smooth_stream = ndimage.filters.gaussian_filter1d(median_stream, 1.0) # smooth
combined_jumps = find_jumps(stream)
stream_time_length = (stream.index[-1] - stream.index[0]).total_seconds()
n_plot_rows = int(np.ceil(stream_time_length/1800.))
fig, axes = plt.subplots(n_plot_rows, 1, figsize=(40,n_plot_rows*5))
for n in range(n_plot_rows):
stream_time_start = stream.index[0] + timedelta(seconds=1800*n)
stream_time_end = stream.index[0] + timedelta(seconds=1800*(n+1))
stream_trimmed_values = smooth_stream[(stream.index>stream_time_start) & (stream.index<stream_time_end)]
stream_trimmed_timeticks = stream.index[(stream.index>stream_time_start)&(stream.index<stream_time_end)]
axes[n].plot(stream_trimmed_timeticks, stream_trimmed_values, c="purple", lw=2)
for jump in combined_jumps:
if jump[2][1] > stream_time_start and jump[2][0] < stream_time_end:
axes[n].plot([jump[2][1], jump[2][1]], [0, 1000+jump[1][0]], color="red")
axes[n].text(jump[2][1], 1000+jump[1][0], str(int(round(jump[1][0]))) + " +/- " + str(round(jump[1][1],2)), rotation=45, va="bottom", ha="left")
axes[n].set_ylim(10,4000)
axes[n].set_xlim(stream_time_start, stream_time_end)
axes[n].set_ylabel("Line Amplitude")
axes[n].set_xlabel("Timestamp")
canvas = FigureCanvas(fig)
canvas.print_figure("full_plots/" + datafilename.split(".")[0] + "_" + line_name + "_jumps.png", dpi=72, bbox_inches='tight')
close("all")
示例10: plot_nonlinear_iterations
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def plot_nonlinear_iterations(**kwargs):
steps = extract_steps(**kwargs)
fig = Figure()
ax = fig.add_subplot(111)
title = fig.suptitle(kwargs.get('title'), fontsize = 14, fontweight = 'bold')
canvas = FigureCanvas(fig)
step_numbers = [
step.step_number for step in steps if step.status_convergence == 1]
num_iters_nonlinear = [
step.num_iters_nonlinear for step in steps if step.status_convergence == 1]
ax.bar(
step_numbers,
num_iters_nonlinear)
ax.set_xlabel('Continuation Step')
ax.set_ylabel('Nonlinear Iterations')
set_num_ticks(ax, integer = (True, True))
canvas.print_figure(
'nonlinear_iterations.pdf',
bbox_extra_artists = [title],
bbox_inches = 'tight')
示例11: draw_plot
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def draw_plot(meta, data1, data2, fn):
"""
"""
fig = Figure(figsize = (10,10))
axis = fig.add_subplot(1,1,1)
axis.set_title(meta)
axis.set_xlabel("MLOD")
axis.set_ylabel("Markers")
axis.grid(False)
axis.autoscale(enable = True)
axis.axhline(0, color = 'k')
x = [info[0] for info in data1]
y = [info[2] for info in data1]
axis.plot(x, y, color='r', label = 'sse')
x = [info[0] for info in data2]
y = [info[2] for info in data2]
axis.plot(x, y, color='b', label = 'gxe')
box = axis.get_position()
axis.set_position([box.x0, box.y0, box.width * 0.8, box.height])
axis.legend(loc = 'center left', bbox_to_anchor=(1.0,0.5))
canvas = FigureCanvas(fig)
print "Saving file..."
canvas.print_figure(fn)
示例12: graph
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def graph(args):
# Get data points
f = open("%s/http-data.txt" % (args.dir, ))
data = map(lambda x: x.split(','), f.readlines())
f.close()
xdata = map(lambda x: float(x[0]), data)
ydata = map(lambda x: float(x[1]), data)
# Create a figure with size 6 x 6 inches.
fig = Figure(figsize=(6, 6))
# Create a canvas and add the figure to it.
canvas = FigureCanvas(fig)
# Added various information
ax = fig.add_subplot(111)
ax.set_title("Impact on HTTP Flows", fontsize=14)
ax.set_xlabel("File Size (packets)", fontsize=12)
ax.set_ylabel("Response Time (Normalized)", fontsize=12)
ax.set_xscale('log')
ax.set_yscale('log')
# Display Grid.
ax.grid(True, linestyle='-', color='0.75')
# Generate and save the Scatter Plot.
ax.scatter(xdata, ydata, s=20, color='tomato');
canvas.print_figure(args.out, dpi=500)
示例13: plot_ast_fields
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def plot_ast_fields(fields, matches, ast_centers=None):
fig = Figure(figsize=(3.5, 3.5), frameon=False)
canvas = FigureCanvas(fig)
gs = gridspec.GridSpec(1, 1,
left=0.15, right=0.95, bottom=0.15, top=0.95,
wspace=None, hspace=None,
width_ratios=None, height_ratios=None)
basemap = load_galex_map()
ax = setup_galex_axes(fig, gs[0], basemap)
plot_patch_footprints(ax, alpha=0.8, edgecolor='dodgerblue')
for n, m in matches.iteritems():
footprint = np.array(m['poly'])
patch = Polygon(footprint, closed=True,
transform=ax.get_transform('world'),
facecolor='y', alpha=1,
edgecolor='k', lw=0.5, zorder=10)
ax.add_patch(patch)
x = footprint[:, 0].mean()
y = footprint[:, 1].mean()
ax.annotate('{0:d}'.format(n), xy=(x, y),
xycoords=ax.get_transform('world'),
xytext=(3, -3), textcoords="offset points",
size=8,
bbox=dict(boxstyle="round",
fc=(1., 1., 1., 0.8),
edgecolor='None'))
if ast_centers is not None:
ax.scatter(ast_centers[:, 0], ast_centers[:, 1],
marker='*', c='y',
transform=ax.get_transform('world'))
gs.tight_layout(fig, pad=1.08, h_pad=None, w_pad=None, rect=None)
ax.coords[0].ticklabels.set_size(11)
ax.coords[1].ticklabels.set_size(11)
canvas.print_figure("phat_ast_fields.pdf", format="pdf")
示例14: draw_pt_bins
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def draw_pt_bins(in_file, out_dir, eff=0.7, rej_flavor='U', ext='.pdf',
subset=None):
fig = Figure(figsize=(8,6))
canvas = FigureCanvas(fig)
ax = fig.add_subplot(1,1,1)
ax.grid(which='both')
ax.set_xscale('log')
for tagger in tagschema.get_taggers(in_file, subset):
pt_bins = tagschema.get_pt_bins(in_file['B/btag/ptBins'])
eff_group = in_file['B/btag/ptBins']
rej_group = in_file['{}/btag/ptBins'.format(rej_flavor.upper())]
x_vals, y_vals, x_err, y_err = _get_pt_xy(
eff_group, rej_group, pt_bins, eff, tagger=tagger)
with tagschema.ColorScheme('colors.yml') as colors:
ax.errorbar(
x_vals, y_vals, label=tagger, #xerr=x_err,
yerr=y_err, color=colors[tagger])
ax.legend(numpoints=1, loc='upper left')
ax.set_xlim(20, np.max(x_vals) * 1.1)
ax.set_xlabel('$p_{\mathrm{T}}$ [GeV]', x=0.98, ha='right')
ax.set_ylabel(rej_label(rej_flavor, eff), y=0.98, ha='right')
x_formatter = FuncFormatter(tick_format)
ax.xaxis.set_minor_formatter(x_formatter)
ax.xaxis.set_major_formatter(x_formatter)
out_name = '{}/{}Rej{}_ptbins{}'.format(
out_dir, rej_flavor.lower(), int(eff*100), ext)
canvas.print_figure(out_name, bbox_inches='tight')
示例15: generateChart
# 需要导入模块: from matplotlib.backends.backend_agg import FigureCanvasAgg [as 别名]
# 或者: from matplotlib.backends.backend_agg.FigureCanvasAgg import print_figure [as 别名]
def generateChart(self):
u_genes = self.getUniqueGenes()
data = dict()
for gene, tags in u_genes.iteritems():
if not data.has_key(len(tags)):
data[len(tags)] = 0
data[len(tags)] += 1
data[0] = self._genes_c - len(u_genes.keys())
xs = list()
ys = list()
# Convert the values to %
for k, v in data.iteritems():
xs.append(k)
ys.append((float(v) / self._genes_c))
fig = Figure()
ax = fig.add_subplot(111)
ax.bar(xs, ys, width=0.5, align='center')
fig.get_axes()[0].set_ylabel('% of genes')
fig.get_axes()[0].set_xlabel('# of unique tags')
#fig.get_axes()[0].set_yscale('log')
canvas = FigureCanvasAgg(fig)
canvas.print_figure('enzyme-%s-length-%i.png' % \
(self.enzyme, self._original_tag_length),
dpi=96)
return data