当前位置: 首页>>代码示例>>Python>>正文


Python Axes.set_xticklabels方法代码示例

本文整理汇总了Python中matplotlib.axes.Axes.set_xticklabels方法的典型用法代码示例。如果您正苦于以下问题:Python Axes.set_xticklabels方法的具体用法?Python Axes.set_xticklabels怎么用?Python Axes.set_xticklabels使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.axes.Axes的用法示例。


在下文中一共展示了Axes.set_xticklabels方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: display_image

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import set_xticklabels [as 别名]
 def display_image(self):
 
     # plot and save the image
     img = self.compute_image()
     
     # clear previous figure
     self.fig.clf()
     # setup plot 
     ax = Axes(self.fig, [0, 0, 1, 1]) # remove outer border  
     ax.set_axis_off()                 # disable axis
     ax.set_xlim((self.xmin, self.xmax))
     ax.set_ylim((self.ymin, self.ymax))
     ax.set_xticklabels([])
     ax.set_yticklabels([])
     ax.imshow(img, cmap=pl.get_cmap(self.cmap), interpolation='nearest', 
               extent=[self.xmin, self.xmax, self.ymin, self.ymax],
               origin='upper', aspect=1.0)
               
     self.fig.add_axes(ax)
开发者ID:TarasKuzyo,项目名称:python-fractals,代码行数:21,代码来源:julia-fractal.py

示例2: plot_hex_and_violin

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import set_xticklabels [as 别名]
def plot_hex_and_violin(abscissa, ordinate, bin_edges, extent=None,
                        xlabel="", ylabel="", zlabel="", do_hex=True, do_violin=True,
                        cm=plt.cm.inferno, axis=None, v_padding=.015, **kwargs):

    """
    takes two arrays of coordinates and creates a 2D hexbin plot and a violin plot (or
    just one of them)

    Parameters
    ----------
    abscissa, ordinate : arrays
        the coordinates of the data to plot
    bin_edges : array
        bin edges along the abscissa
    extent : 4-tuple of floats (default: None)
        extension of the abscissa, ordinate; given as is to plt.hexbin
    xlabel, ylabel : strings (defaults: "")
        labels for the two axes of either plot
    zlabel : string (default: "")
        label for the colorbar of the hexbin plot
    do_hex, do_violin : bools (defaults: True)
        whether or not to do the respective plots
    cm : colour map (default: plt.cm.inferno)
        colour map to be used for the hexbin plot
    kwargs : args dictionary
        more arguments to be passed to plt.hexbin
    """

    if axis:
        if do_hex and do_violin:
            from matplotlib.axes import Axes
            from matplotlib.transforms import Bbox
            axis_bbox = axis.get_position()
            axis.axis("off")
        else:
            plt.sca(axis)

    # make a normal 2D hexplot from the given data
    if do_hex:

        # if we do both plot types,
        if do_violin:
            if axis:
                ax_hex_pos = axis_bbox.get_points().copy()  # [[x0, y0], [x1, y1]]
                ax_hex_pos[0, 1] += np.diff(ax_hex_pos, axis=0)[0, 1]*(.5+v_padding)
                ax_hex = Axes(plt.gcf(), Bbox.from_extents(ax_hex_pos))
                plt.gcf().add_axes(ax_hex)
                plt.sca(ax_hex)
                ax_hex.set_xticklabels([])
            else:
                plt.subplot(211)

        plt.hexbin(abscissa,
                   ordinate,
                   gridsize=40,
                   extent=extent,
                   cmap=cm,
                   **kwargs)
        cb = plt.colorbar()
        cb.set_label(zlabel)
        plt.xlabel(xlabel)
        plt.ylabel(ylabel)
        if extent:
            plt.xlim(extent[:2])
            plt.ylim(extent[2:])

    # prepare and draw the data for the violin plot
    if do_violin:

        # if we do both plot types, open a subplot
        if do_hex:
            if axis:
                ax_vio_pos = axis_bbox.get_points().copy()  # [[x0, y0], [x1, y1]]
                ax_vio_pos[1, 1] -= np.diff(ax_vio_pos, axis=0)[0, 1]*(.5+v_padding)
                ax_vio = Axes(plt.gcf(), Bbox.from_extents(ax_vio_pos))
                plt.gcf().add_axes(ax_vio)
                plt.sca(ax_vio)
            else:
                plt.subplot(212)

        # to plot the violins, sort the ordinate values into a dictionary
        # the keys are the central values of the bins given by `bin_edges`
        val_vs_dep = {}
        bin_centres = (bin_edges[1:]+bin_edges[:-1])/2.

        for dep, val in zip(abscissa, ordinate):
            # get the bin number this event belongs into
            # outliers are put into the first and last bin accordingly
            ibin = np.clip(np.digitize(dep, bin_edges)-1,
                           0, len(bin_centres)-1)

            # the central value of the bin is the key for the dictionary
            if bin_centres[ibin] not in val_vs_dep:
                val_vs_dep[bin_centres[ibin]] = [val]
            else:
                val_vs_dep[bin_centres[ibin]] += [val]

        keys = [k[0] for k in sorted(val_vs_dep.items())]
        vals = [k[1] for k in sorted(val_vs_dep.items())]

#.........这里部分代码省略.........
开发者ID:tino-michael,项目名称:tino_cta,代码行数:103,代码来源:helper_functions.py


注:本文中的matplotlib.axes.Axes.set_xticklabels方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。