当前位置: 首页>>代码示例>>Python>>正文


Python Axes.plot方法代码示例

本文整理汇总了Python中matplotlib.axes.Axes.plot方法的典型用法代码示例。如果您正苦于以下问题:Python Axes.plot方法的具体用法?Python Axes.plot怎么用?Python Axes.plot使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.axes.Axes的用法示例。


在下文中一共展示了Axes.plot方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_metrics_evolution

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
    def plot_metrics_evolution(cls, ax: axes.Axes, y, x=None, **plot_config):

        # default config
        config = defaultdict(lambda: None)
        config['xlabel'] = 'time'
        for key, value in plot_config.items():
            config[key] = value


        # major ticks every 50
        # major_ticks = np.arange(0, 900, 50)
        # ax.set_xticks(major_ticks)

        # plotting the graph
        if x is None:
            x = np.arange(len(y))

        # check if element of x is tuple or just number
        lines = []
        if isinstance(y[0], (list, tuple)):
            for y_i in zip(*y):
                line, = ax.plot(x, y_i)
                lines.append(line)
        else:
            line, = ax.plot(x, y)
            # colour
            if config['colour'] is not None:
                line.set_color(config['colour'])
            lines.append(line)


        cls.apply_plot_config(ax, config)

        return lines
开发者ID:rbgorbet,项目名称:Hylozoic-Series-3,代码行数:36,代码来源:data_plotter.py

示例2: plot_evolution

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
    def plot_evolution(cls, ax: axes.Axes, y, x=None, **plot_config):

        # default config
        config = defaultdict(lambda: None)
        config['xlabel'] = 'time'
        for key, value in plot_config.items():
            config[key] = value


        # plotting the graph
        if x is None:
            x = np.arange(len(y))

        # check if element of x is tuple or just number
        lines = []
        if isinstance(y[0], (list, tuple)):
            for y_i in zip(*y):
                line, = ax.plot(x, y_i)
                lines.append(line)
        else:
            line, = ax.plot(x, y)
            lines.append(line)

        cls.apply_plot_config(ax, config)
        plt.tight_layout()

        return lines
开发者ID:rbgorbet,项目名称:Hylozoic-Series-3,代码行数:29,代码来源:data_plotter.py

示例3: fibers_2d_xy

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
def fibers_2d_xy():
    '''
        Plot fibers in 2D section (plane XY)
    '''
    fig3 = figure(5)
    ax3 = Axes(fig3, [.1, .1, .8, .8])

    fig3.add_axes(ax3)
    for i in range(0, len(sx[0])):
        l = Line2D([sx[0][i] - fib.lf / 2. * cos(phi_x[0][i]), sx[0][i] + fib.lf / 2. * cos(phi_x[0][i])], \
                     [sy[0][i] - fib.lf / 2. * cos(phi_y[0][i]), sy[0][i] + fib.lf / 2. * cos(phi_y[0][i])], \
                      linewidth = .5, color = 'black')
        #print  i, sx[0][i], lf / 2. * cosphi_x[0][i], [sx[0][i] - lf / 2. * cosphi_x[0][i], sx[0][i] + lf / 2. * cosphi_x[0][i]], \
        #             [sy[0][i] - lf / 2. * cosphi_y[0][i], sy[0][i] + lf / 2. * cosphi_y[0][i]], \
        #              [sz[0][i] - lf / 2. * cosphi_z[0][i], sz[0][i] + lf / 2. * cosphi_z[0][i]]                    
        ax3.add_line(l)
    ax3.plot(sx, sy, 'ko', markersize = 3.0)
    ax3.plot([ -spec.l_x / 2., spec.l_x / 2. ], [spec.l_y / 2., spec.l_y / 2.], 'k-', linewidth = 2)
    ax3.plot([ -spec.l_x / 2., spec.l_x / 2. ], [-spec.l_y / 2., -spec.l_y / 2.], 'k-', linewidth = 2)
    ax3.plot([ spec.l_x / 2., spec.l_x / 2. ], [-spec.l_y / 2., spec.l_y / 2.], 'k-', linewidth = 2)
    ax3.plot([ -spec.l_x / 2., -spec.l_x / 2. ], [-spec.l_y / 2., spec.l_y / 2.], 'k-', linewidth = 2)
    ax3.set_axis_off()
    #ax3.set_xlim( -l_x / 2., l_x / 2. )
    #ax3.set_ylim( -l_y / 2., l_y / 2. )
    title('Fibers in 2D - xy')
    draw()
开发者ID:kelidas,项目名称:scratch,代码行数:28,代码来源:specimen3D_fibers.py

示例4: fibers_2d_yz

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
def fibers_2d_yz():
    '''
        Plot fibers in 2D section (plane YZ)
    '''
    fig2 = figure(1)
    ax2 = Axes(fig2, [.1, .1, .8, .8])

    fig2.add_axes(ax2)
    for i in range(0, len(sx[0])):
        l = Line2D([sy[0][i] - fib.lf / 2. * cos(phi_y[0][i]), sy[0][i] + fib.lf / 2. * cos(phi_y[0][i])], \
                      [sz[0][i] - fib.lf / 2. * cos(phi_z[0][i]), sz[0][i] + fib.lf / 2. * cos(phi_z[0][i])], \
                      linewidth = .5)
        #print  i, sx[0][i], lf / 2. * cosphi_x[0][i], [sx[0][i] - lf / 2. * cosphi_x[0][i], sx[0][i] + lf / 2. * cosphi_x[0][i]], \
        #             [sy[0][i] - lf / 2. * cosphi_y[0][i], sy[0][i] + lf / 2. * cosphi_y[0][i]], \
        #              [sz[0][i] - lf / 2. * cosphi_z[0][i], sz[0][i] + lf / 2. * cosphi_z[0][i]]                    
        ax2.add_line(l)
    ax2.plot(sy, sz, 'ro')
    ax2.plot([ -spec.l_y / 2., spec.l_y / 2. ], [spec.l_z / 2., spec.l_z / 2.], 'r-')
    ax2.plot([ -spec.l_y / 2., spec.l_y / 2. ], [-spec.l_z / 2., -spec.l_z / 2.], 'r-')
    ax2.plot([ spec.l_y / 2., spec.l_y / 2. ], [-spec.l_z / 2., spec.l_z / 2.], 'r-')
    ax2.plot([ -spec.l_y / 2., -spec.l_y / 2. ], [-spec.l_z / 2., spec.l_z / 2.], 'r-')
    #ax2.set_xlim( -l_y / 2., l_y / 2. )
    #ax2.set_ylim( -l_z / 2., l_z / 2. )
    title('Fibers in 2D - yz')
    draw()
    return 0
开发者ID:kelidas,项目名称:scratch,代码行数:28,代码来源:specimen3D_fibers.py

示例5: drawG

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
def drawG(fig, n, roundN, graphs):
    graphsId = difGraphsId(graphs)
    size = len(graphsId)
    print 'size ', size
    bgnX = 0.1
    bgnY = 0.1
    width = 0.8 / size
    height = 0.35

    for idx in range(size):
        ax = Axes(fig, [bgnX, bgnY, width * 0.9, height])
        ax.set_xticks(range(-1,3))
        ax.set_yticks(range(-1, n+1))
        ax.set_frame_on(False)

        gid = graphsId[idx]
        ax.set_title( 'Round ' + str(gid+1) )

        for i in range(-1, n + 1):
            ax.plot(0, i, marker = 'o')
            ax.plot(1, i, marker = 'o')

        for edge in graphs[gid]:
            nodes = [int(i) for i in edge.split('-')]
            nodes[1] -= n
            line = Line2D([0, 1], nodes)

            if gid == 0:
                line.set_color('b')
            else:
                color = 'r'
                for e in graphs[gid-1]:
                    if edge == e:
                        color = 'b'
                        break
                line.set_color(color)

            ax.add_line( line )

        preId = max(gid-1, 0)
        for edge in graphs[preId]:
            color = 'g'
            for e in graphs[gid]:
                if edge == e:
                    color = 'b'
                    break

            if color == 'g':
                nodes = [int(i) for i in edge.split('-')]
                nodes[1] -= n
                line = Line2D([0, 1], nodes, linestyle= '--')
                line.set_color(color)
                ax.add_line( line )

        fig.add_axes( ax )
        bgnX += width
开发者ID:iSuneast,项目名称:Market,代码行数:58,代码来源:makeLog.py

示例6: plot

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
    def plot(self, *args, **kwargs):
        if "projection" in kwargs:
            projection = kwargs.pop("projection")
        else:
            projection = self.name
        vars = args[:2]
        args = args[2:]

        if len(vars) == 2 and isinstance(vars[1], (str, unicode)):
            args = (vars[1],) + args
            vars = vars[:1]

        if ((len(vars) == 1 and
             isinstance(vars[0], hfarray) and
             len(vars[0].dims) >= 1)):
            y = vars[0]
            x = hfarray(y.dims[0])
            vars = (x, y)
            if self.HFTOOLS_default_x_name is None:
                self.HFTOOLS_default_x_name = y.dims[0].name
                fmt = self.axes.xaxis.get_major_formatter()
                if hasattr(fmt, "update_template"):
                    fmt.default_label = self.HFTOOLS_default_x_name
                    fmt.update_template()

        if len(vars) == 1:
            y = vars[0]
            if projection in _projfun:
                x, y = _projfun[projection](None, y)
                return Axes.plot(self, y, *args, **kwargs)
            elif np.iscomplexobj(y):
                return Axes.plot(self, y.real, y.imag, *args, **kwargs)
            else:
                return Axes.plot(self, y, *args, **kwargs)
        elif len(vars) == 2:
            x = vars[0]
            y = vars[1]
            xunit = getattr(x, "unit", None)
            yunit = getattr(y, "unit", None)

            if projection in _projfun:
                x, y = _projfun[projection](x, y)
                lines = self._plot_helper(x, y, *args, **kwargs)
            elif np.iscomplexobj(y):
                xunit = yunit
                lines = self._plot_helper(y.real, y.imag, *args, **kwargs)
            else:
                lines = self._plot_helper(x, y, *args, **kwargs)
            if xunit:
                self.set_xlabel_unit(xunit)
            if yunit:
                self.set_ylabel_unit(yunit)
            return lines
        else:
            raise Exception("Missing plot data")
开发者ID:arsenovic,项目名称:hftools,代码行数:57,代码来源:helper.py

示例7: plot_regional_evolution

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
    def plot_regional_evolution(cls, ax: axes.Axes, y, x=None, **plot_config):

        # default config
        config = defaultdict(lambda: None)
        config['xlabel'] = 'time'
        config['colourmap'] = cls.colour_map
        for key, value in plot_config.items():
            config[key] = value

        # plotting the graph
        if x is None:
            x = np.arange(len(y))

        # separating out the data for each region
        region_data = defaultdict(list)
        for i in range(len(y)):
            for region_id in y[i].keys():
                region_data[region_id].append((x[i], y[i][region_id]))

        # set the colour mapping for region ids
        region_ids = sorted(tuple(region_data.keys()))
        colours = plt.get_cmap(config['colourmap'])(np.linspace(0, 1.0, len(region_ids)))

        lines = []
        for i, data_i in region_data.items():
            x_i, y_i = tuple(zip(*data_i))
            line, = ax.plot(x_i, y_i)
            line.set_color(colours[region_ids.index(i)])
            lines.append(line)

        cls.apply_plot_config(ax, config)

        return lines, region_ids
开发者ID:rbgorbet,项目名称:Hylozoic-Series-3,代码行数:35,代码来源:cbla_data_plotter.py

示例8: plot

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
 def plot(self, xs, ys, *args, **kwargs):
     '''
     Plot 2D or 3D data.
     ==========  ================================================
     Argument    Description
     ==========  ================================================
     *xs*, *ys*  X, y coordinates of vertices
     *zs*        z value(s), either one for all points or one for
                 each point.
     *zdir*      Which direction to use as z ('x', 'y' or 'z')
                 when plotting a 2d set.
     ==========  ================================================
     Other arguments are passed on to
     :func:`~matplotlib.axes.Axes.plot`
     '''
     had_data = self.has_data()
     zs = kwargs.pop('zs', 0)
     zdir = kwargs.pop('zdir', 'z')
     argsi = 0
     if len(args) > 0 and cbook.iterable(args[0]) and \
             len(xs) == len(args[0]) and cbook.is_scalar(args[0][0]):
         zs = args[argsi]
         argsi += 1
     elif len(args) > 0 and cbook.is_scalar(args[0]):
         zs = args[argsi]
         argsi += 1
     if not cbook.iterable(zs):
         zs = np.ones(len(xs)) * zs
     lines = Axes.plot(self, xs, ys, *args[argsi:], **kwargs)
     for line in lines:
         art3d.line_2d_to_3d(line, zs=zs, zdir=zdir)
     self.auto_scale_xyz(xs, ys, zs, had_data)
     return lines
开发者ID:,项目名称:,代码行数:35,代码来源:

示例9: plot

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
    def plot(self, xs, ys, *args, **kwargs):
        '''
        Plot 2D or 3D data.

        ==========  ================================================
        Argument    Description
        ==========  ================================================
        *xs*, *ys*  X, y coordinates of vertices

        *zs*        z value(s), either one for all points or one for
                    each point.
        *zdir*      Which direction to use as z ('x', 'y' or 'z')
                    when plotting a 2d set.
        ==========  ================================================

        Other arguments are passed on to
        :func:`~matplotlib.axes.Axes.plot`
        '''
        # FIXME: This argument parsing might be better handled
        #        when we set later versions of python for
        #        minimum requirements.  Currently at 2.4.
        #        Note that some of the reason for the current difficulty
        #        is caused by the fact that we want to insert a new
        #        (semi-optional) positional argument 'Z' right before
        #        many other traditional positional arguments occur
        #        such as the color, linestyle and/or marker.
        had_data = self.has_data()
        zs = kwargs.pop('zs', 0)
        zdir = kwargs.pop('zdir', 'z')

        argsi = 0
        # First argument is array of zs
        if len(args) > 0 and cbook.iterable(args[0]) and \
                len(xs) == len(args[0]) :
            # So, we know that it is an array with
            # first dimension the same as xs.
            # Next, check to see if the data contained
            # therein (if any) is scalar (and not another array).
            if len(args[0]) == 0 or cbook.is_scalar(args[0][0]) :
                zs = args[argsi]
                argsi += 1

        # First argument is z value
        elif len(args) > 0 and cbook.is_scalar(args[0]):
            zs = args[argsi]
            argsi += 1

        # Match length
        if not cbook.iterable(zs):
            zs = np.ones(len(xs)) * zs

        lines = Axes.plot(self, xs, ys, *args[argsi:], **kwargs)
        for line in lines:
            art3d.line_2d_to_3d(line, zs=zs, zdir=zdir)

        self.auto_scale_xyz(xs, ys, zs, had_data)
        return lines
开发者ID:dhomeier,项目名称:matplotlib-py3,代码行数:59,代码来源:axes3d.py

示例10: drawEP

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
def drawEP(fig, n, roundN, endowments, prices):
    ax = Axes(fig, [.1, .55, .8, .35])
    ax.grid(True)
    ax.set_xticks( range(roundN+1) )
    ax.set_frame_on(False)

    users = [[] for i in range(n)]
    for i in range(n):
        for j in range(roundN):
            users[i].append( float(Fraction(endowments[j][i])) )
        users[i].append( float(Fraction(prices[roundN-1][i])) )

    x = range(roundN+1)
    for i in range(n):
        price = round(float(Fraction(prices[roundN-1][i])), 3)
        ax.plot(x, users[i], linestyle = '--', marker = 'o', label = str(i) + ": " + str(price))
#    ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=2, ncol=min(n, 5), mode="expand", borderaxespad=0.)
    ax.legend()

    fig.add_axes( ax )
开发者ID:iSuneast,项目名称:Market,代码行数:22,代码来源:makeLog.py

示例11: _plot_helper

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
    def _plot_helper(self, x, y, *args, **kwargs):
        if not hasattr(y, "dims"):
            return Axes.plot(self, x, y, *args, **kwargs)
        if x.ndim == 1 and y.ndim == 1:
            return Axes.plot(self, x, y, *args, **kwargs)
        else:
            return Axes.plot(self, remove_tail(x), remove_tail(y), *args, **kwargs)

            Ns = y.shape[1:4]
            kw = kwargs.copy()
            lines = []
            if len(Ns) == 1:
                C = zip(itertools.cycle(self.colorcycle), range(Ns[0]))
                for c, i in C:
                    #kw.update(dict(color=c))
                    if hasattr(x, "dims") and (get_dims_names(x) ==
                                               get_dims_names(y)):
                        xx = x[:, i].squeeze()
                    else:
                        xx = x
                    lines.extend(Axes.plot(self, xx, remove_tail(y[:, i]),
                                           *args, **kw))
            elif len(Ns) == 2:
                C = zip(itertools.cycle(self.colorcycle), range(Ns[0]))
                M = zip(itertools.cycle(self.markercycle), range(Ns[1]))
                for c, i in C:
                    for m, j in M:
                        if hasattr(x, "dims") and (get_dims_names(x) ==
                                                   get_dims_names(y)):
                            xx = x[:, i, j].squeeze()
                        else:
                            xx = x
                        #kw.update(dict(color=c, marker=m))
                        lines.extend(Axes.plot(self, xx,
                                               remove_tail(y[:, i, j]),
                                               *args, **kw))
            elif len(Ns) > 2:
                C = zip(itertools.cycle(self.colorcycle), range(Ns[0]))
                M = zip(itertools.cycle(self.markercycle), range(Ns[1]))
                L = zip(itertools.cycle(self.linecycle), range(Ns[2]))
                for c, i in C:
                    for m, j in M:
                        for l, k in L:
                            if hasattr(x, "dims") and (get_dims_names(x) ==
                                                       get_dims_names(y)):
                                xx = x[:, i, j, k].squeeze()
                            else:
                                xx = x
                            #kw.update(dict(color=c, marker=m, line=l))
                            lines.extend(Axes.plot(self, xx,
                                                   remove_tail(y[:, i, j, k]),
                                                   *args, **kw))
            return lines
开发者ID:arsenovic,项目名称:hftools,代码行数:55,代码来源:helper.py

示例12: plot

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
    def plot(self, *args, **kwargs):
        """
        If the **mantid** projection is chosen, it can be
        used the same as :py:meth:`matplotlib.axes.Axes.plot` for arrays,
        or it can be used to plot :class:`mantid.api.MatrixWorkspace`
        or :class:`mantid.api.IMDHistoWorkspace`. You can have something like::

            import matplotlib.pyplot as plt
            from mantid import plots

            ...

            fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
            ax.plot(workspace,'rs',specNum=1) #for workspaces
            ax.plot(x,y,'bo')                 #for arrays
            fig.show()

        For keywords related to workspaces, see :func:`plotfunctions.plot`.
        """
        if helperfunctions.validate_args(*args):
            logger.debug('using plotfunctions')

            def _data_update(artists, workspace):
                # It's only possible to plot 1 line at a time from a workspace
                x, y, _, __ = plotfunctions._plot_impl(self, workspace, args, kwargs)
                artists[0].set_data(x, y)
                self.relim()
                self.autoscale()
                return artists

            workspace = args[0]
            spec_num = self._get_spec_number(workspace, kwargs)
            return self.track_workspace_artist(
                workspace, plotfunctions.plot(self, *args, **kwargs),
                _data_update, spec_num)
        else:
            return Axes.plot(self, *args, **kwargs)
开发者ID:mantidproject,项目名称:mantid,代码行数:39,代码来源:__init__.py

示例13: plot_regional_points

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
    def plot_regional_points(cls, ax: axes.Axes, region_data, **plot_config):

        # default config
        config = defaultdict(lambda: None)
        config['colourmap'] = cls.colour_map
        config['marker'] = 'o'
        config['linestyle'] = ''
        config['markersize'] = 3
        for key, value in plot_config.items():
            config[key] = value

        # set the colour mapping for region ids
        region_ids = sorted(tuple(region_data.keys()))
        colours = plt.get_cmap(config['colourmap'])(np.linspace(0, 1.0, len(region_ids)))

        all_dots = []
        for i, data_i in region_data.items():

            dots, = ax.plot(*data_i)
            # dots = ax.scatter(x_i, y_i)
            dots.set_color(colours[region_ids.index(i)])
            all_dots.append(dots)

        cls.apply_plot_config(ax, config)
开发者ID:rbgorbet,项目名称:Hylozoic-Series-3,代码行数:26,代码来源:cbla_data_plotter.py

示例14: plot

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
    def plot(self, *args, **kwargs):
        '''
        If the **mantid** projection is chosen, it can be
        used the same as :py:meth:`matplotlib.axes.Axes.plot` for arrays,
        or it can be used to plot :class:`mantid.api.MatrixWorkspace`
        or :class:`mantid.api.IMDHistoWorkspace`. You can have something like::

            import matplotlib.pyplot as plt
            from mantid import plots

            ...

            fig, ax = plt.subplots(subplot_kw={'projection':'mantid'})
            ax.plot(workspace,'rs',specNum=1) #for workspaces
            ax.plot(x,y,'bo')                 #for arrays
            fig.show()

        For keywords related to workspaces, see :func:`mantid.plots.plotfunctions.plot`.
        '''
        if mantid.plots.helperfunctions.validate_args(*args, **kwargs):
            mantid.kernel.logger.debug('using mantid.plots.plotfunctions')
            return mantid.plots.plotfunctions.plot(self, *args, **kwargs)
        else:
            return Axes.plot(self, *args, **kwargs)
开发者ID:samueljackson92,项目名称:mantid,代码行数:26,代码来源:__init__.py

示例15: plot

# 需要导入模块: from matplotlib.axes import Axes [as 别名]
# 或者: from matplotlib.axes.Axes import plot [as 别名]
    def plot(self, *args, **kwargs):
        '''
        Plot the given data into the Smith Chart. Behavior similar to basic
        :meth:`matplotlib.axes.Axes.plot`, but with some extensions:

            - Additional support for complex data. Complex values must be
            either of type 'complex' or a numpy.ndarray with dtype=complex.
            - If 'zorder' is not provided, the current default value is used.
            - If 'marker' is not providet, the default value is used.
            - Extra keywords are added.

        Extra keyword arguments:

            *no_transform*:
                If set, given data points are plotted directly, without
                transforming them into smith space.

            *path_interpolation*:
                If set, interpolates the path with the given steps.  If the
                value is 0, a bezier arc is drawn.

            *markerhack*:
                If set, activates the manipulation of start and end markern
                of the created line.

            *rotate_marker*:
                if *markerhack* is active, rotates the endmarker in direction
                of the corresponding path.

        See :meth:`matplotlib.axes.Axes.plot` for mor details
        '''
        new_args = ()
        for arg in args:
            if isinstance(arg, np.ndarray) and arg.dtype == np.complex64 or \
               isinstance(arg, np.ndarray) and arg.dtype == np.float32 or \
               isinstance(arg, complex) or isinstance(arg, float):
                new_args += (np.real(arg), np.imag(arg))
            else:
                new_args += (arg,)

        if 'zorder' not in kwargs:
            kwargs['zorder'] = self._current_zorder
            self._current_zorder += 0.001
        if 'marker' not in kwargs:
            kwargs['marker'] = self._get_key("plot.marker")

        if "path_interpolation" in kwargs:
            steps = kwargs.pop("path_interpolation")
        else:
            steps = None

        if "markerhack" in kwargs:
            markerhack = kwargs.pop("markerhack")
        else:
            markerhack = self._get_key("plot.hacklines")

        if "rotate_marker" in kwargs:
            rotate_marker = kwargs.pop("rotate_marker")
        else:
            rotate_marker = self._get_key("plot.rotatemarker")

        if "no_transform" in kwargs:
            no_transform = kwargs.pop("no_transform")
        else:
            no_transform = False

        lines = Axes.plot(self, *new_args, **kwargs)
        for line in lines:
            if no_transform:
                x, y = line.get_data()
                z = self._moebius_inv_z(x + y * 1j)
                line.set_data(z.real, z.imag)

            if steps is not None:
                line.get_path()._interpolation_steps = steps

            if markerhack:
                self._hack_linedraw(line, rotate_marker)

        return lines
开发者ID:openchip,项目名称:red-pitaya-notes,代码行数:82,代码来源:smithaxes.py


注:本文中的matplotlib.axes.Axes.plot方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。