本文整理汇总了Python中lmfit.Minimizer.scalar_minimize方法的典型用法代码示例。如果您正苦于以下问题:Python Minimizer.scalar_minimize方法的具体用法?Python Minimizer.scalar_minimize怎么用?Python Minimizer.scalar_minimize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类lmfit.Minimizer
的用法示例。
在下文中一共展示了Minimizer.scalar_minimize方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_minizers
# 需要导入模块: from lmfit import Minimizer [as 别名]
# 或者: from lmfit.Minimizer import scalar_minimize [as 别名]
def test_minizers():
"""
test scale minimizers except newton-cg (needs jacobian) and
anneal (doesn't work out of the box).
"""
methods = ['Nelder-Mead', 'Powell', 'CG', 'BFGS',
'L-BFGS-B', 'TNC', 'COBYLA', 'SLSQP']
p_true = Parameters()
p_true.add('amp', value=14.0)
p_true.add('period', value=5.33)
p_true.add('shift', value=0.123)
p_true.add('decay', value=0.010)
def residual(pars, x, data=None):
amp = pars['amp'].value
per = pars['period'].value
shift = pars['shift'].value
decay = pars['decay'].value
if abs(shift) > pi/2:
shift = shift - np.sign(shift)*pi
model = amp*np.sin(shift + x/per) * np.exp(-x*x*decay*decay)
if data is None:
return model
return (model - data)
n = 2500
xmin = 0.
xmax = 250.0
noise = np.random.normal(scale=0.7215, size=n)
x = np.linspace(xmin, xmax, n)
data = residual(p_true, x) + noise
fit_params = Parameters()
fit_params.add('amp', value=11.0, min=5, max=20)
fit_params.add('period', value=5., min=1., max=7)
fit_params.add('shift', value=.10, min=0.0, max=0.2)
fit_params.add('decay', value=6.e-3, min=0, max=0.1)
init = residual(fit_params, x)
mini = Minimizer(residual, fit_params, [x, data])
for m in methods:
print(m)
mini.scalar_minimize(m, x)
fit = residual(fit_params, x)
for name, par in fit_params.items():
nout = "%s:%s" % (name, ' '*(20-len(name)))
print("%s: %s (%s) " % (nout, par.value, p_true[name].value))
for para, true_para in zip(fit_params.values(), p_true.values()):
check_wo_stderr(para, true_para.value)
示例2: optimize
# 需要导入模块: from lmfit import Minimizer [as 别名]
# 或者: from lmfit.Minimizer import scalar_minimize [as 别名]
def optimize(self):
def loss(pars):
#unpack params
parvals = pars.valuesdict()
self.beta = parvals['beta']
self.decay = parvals['decay']
self.lr = parvals['lr']
self.eps = parvals['eps']
probs, attention_weights = self.run_data()
neg_log_likelihood = -numpy.sum(numpy.log(probs))
return neg_log_likelihood
def track_loss(params, iter, resid):
if iter%100==0:
print(iter, resid)
params = Parameters()
if self.decay_weights:
params.add('decay', value=0, min=0, max=1)
else:
params.add('decay', value=0, vary=False)
params.add('beta', value=1, min=.01, max=100)
params.add('eps', value=0, min=0, max=1)
params.add('lr', value=.1, min=.000001, max=1)
if self.verbose==False:
fitter = Minimizer(loss, params)
else:
fitter = Minimizer(loss, params, iter_cb=track_loss)
fitter.scalar_minimize(method='Nelder-Mead', options={'xatol': 1e-3,
'maxiter': 200})
示例3: test_scalar_minimize_neg_value
# 需要导入模块: from lmfit import Minimizer [as 别名]
# 或者: from lmfit.Minimizer import scalar_minimize [as 别名]
def test_scalar_minimize_neg_value():
x0 = 3.14
fmin = -1.1
xtol = 0.001
ftol = 2.0 * xtol
def objective(pars):
return (pars['x'] - x0) ** 2.0 + fmin
params = Parameters()
params.add('x', value=2*x0)
minr = Minimizer(objective, params)
result = minr.scalar_minimize(method='Nelder-Mead',
options={'xatol': xtol, 'fatol': ftol})
assert abs(result.params['x'].value - x0) < xtol
assert abs(result.fun - fmin) < ftol
示例4: CommonMinimizerTest
# 需要导入模块: from lmfit import Minimizer [as 别名]
# 或者: from lmfit.Minimizer import scalar_minimize [as 别名]
class CommonMinimizerTest(unittest.TestCase):
def setUp(self):
"""
test scale minimizers except newton-cg (needs jacobian) and
anneal (doesn't work out of the box).
"""
p_true = Parameters()
p_true.add('amp', value=14.0)
p_true.add('period', value=5.33)
p_true.add('shift', value=0.123)
p_true.add('decay', value=0.010)
self.p_true = p_true
n = 2500
xmin = 0.
xmax = 250.0
noise = np.random.normal(scale=0.7215, size=n)
self.x = np.linspace(xmin, xmax, n)
self.data = self.residual(p_true, self.x) + noise
fit_params = Parameters()
fit_params.add('amp', value=11.0, min=5, max=20)
fit_params.add('period', value=5., min=1., max=7)
fit_params.add('shift', value=.10, min=0.0, max=0.2)
fit_params.add('decay', value=6.e-3, min=0, max=0.1)
self.fit_params = fit_params
self.mini = Minimizer(self.residual, fit_params, [self.x, self.data])
def residual(self, pars, x, data=None):
amp = pars['amp']
per = pars['period']
shift = pars['shift']
decay = pars['decay']
if abs(shift) > pi/2:
shift = shift - np.sign(shift) * pi
model = amp*np.sin(shift + x/per) * np.exp(-x*x*decay*decay)
if data is None:
return model
return model - data
def test_diffev_bounds_check(self):
# You need finite (min, max) for each parameter if you're using
# differential_evolution.
self.fit_params['decay'].min = -np.inf
self.fit_params['decay'].vary = True
self.minimizer = 'differential_evolution'
pytest.raises(ValueError, self.scalar_minimizer)
# but only if a parameter is not fixed
self.fit_params['decay'].vary = False
self.mini.scalar_minimize(method='differential_evolution', maxiter=1)
def test_scalar_minimizers(self):
# test all the scalar minimizers
for method in SCALAR_METHODS:
if method in ['newton', 'dogleg', 'trust-ncg', 'cg', 'trust-exact',
'trust-krylov', 'trust-constr']:
continue
self.minimizer = SCALAR_METHODS[method]
if method == 'Nelder-Mead':
sig = 0.2
else:
sig = 0.15
self.scalar_minimizer(sig=sig)
def scalar_minimizer(self, sig=0.15):
out = self.mini.scalar_minimize(method=self.minimizer)
self.residual(out.params, self.x)
for para, true_para in zip(out.params.values(), self.p_true.values()):
check_wo_stderr(para, true_para.value, sig=sig)
def test_nan_policy(self):
# check that an error is raised if there are nan in
# the data returned by userfcn
self.data[0] = np.nan
major, minor, _micro = scipy_version.split('.', 2)
for method in SCALAR_METHODS:
if (method == 'differential_evolution' and int(major) > 0 and
int(minor) >= 2):
pytest.raises(RuntimeError, self.mini.scalar_minimize,
SCALAR_METHODS[method])
else:
pytest.raises(ValueError, self.mini.scalar_minimize,
SCALAR_METHODS[method])
pytest.raises(ValueError, self.mini.minimize)
# now check that the fit proceeds if nan_policy is 'omit'
self.mini.nan_policy = 'omit'
res = self.mini.minimize()
assert_equal(res.ndata, np.size(self.data, 0) - 1)
for para, true_para in zip(res.params.values(), self.p_true.values()):
check_wo_stderr(para, true_para.value, sig=0.15)
#.........这里部分代码省略.........
示例5: error
# 需要导入模块: from lmfit import Minimizer [as 别名]
# 或者: from lmfit.Minimizer import scalar_minimize [as 别名]
sigma = 0.021 # estimate of data error (for all data points)
myfit = Minimizer(residual, pfit, # iter_cb=per_iteration,
fcn_args=(x,), fcn_kws={'sigma':sigma, 'data':data},
scale_covar=True)
myfit.prepare_fit()
init = residual(myfit.params, x)
if HASPYLAB:
pylab.plot(x, init, 'b--')
# fit with Nelder-Mead simplex method
supported_methods = ('BFGS', 'COBYLA', 'SLSQP', 'Powell', 'Nelder-Mead')
myfit.scalar_minimize(method='Nelder-Mead')
print(' Nfev = ', myfit.nfev)
# print( myfit.chisqr, myfit.redchi, myfit.nfree)
# report_errors(myfit.params, modelpars=p_true)
fit = residual(myfit.params, x)
if HASPYLAB:
pylab.plot(x, fit, 'k-')
pylab.show()
示例6: CommonMinimizerTest
# 需要导入模块: from lmfit import Minimizer [as 别名]
# 或者: from lmfit.Minimizer import scalar_minimize [as 别名]
class CommonMinimizerTest(object):
def setUp(self):
"""
test scale minimizers except newton-cg (needs jacobian) and
anneal (doesn't work out of the box).
"""
p_true = Parameters()
p_true.add('amp', value=14.0)
p_true.add('period', value=5.33)
p_true.add('shift', value=0.123)
p_true.add('decay', value=0.010)
self.p_true = p_true
n = 2500
xmin = 0.
xmax = 250.0
noise = np.random.normal(scale=0.7215, size=n)
self.x = np.linspace(xmin, xmax, n)
data = self.residual(p_true, self.x) + noise
fit_params = Parameters()
fit_params.add('amp', value=11.0, min=5, max=20)
fit_params.add('period', value=5., min=1., max=7)
fit_params.add('shift', value=.10, min=0.0, max=0.2)
fit_params.add('decay', value=6.e-3, min=0, max=0.1)
self.fit_params = fit_params
init = self.residual(fit_params, self.x)
self.mini = Minimizer(self.residual, fit_params, [self.x, data])
def residual(self, pars, x, data=None):
amp = pars['amp'].value
per = pars['period'].value
shift = pars['shift'].value
decay = pars['decay'].value
if abs(shift) > pi/2:
shift = shift - np.sign(shift)*pi
model = amp*np.sin(shift + x/per) * np.exp(-x*x*decay*decay)
if data is None:
return model
return (model - data)
def test_scalar_minimizer(self):
try:
from scipy.optimize import minimize as scipy_minimize
except ImportError:
raise SkipTest
print(self.minimizer)
self.mini.scalar_minimize(self.minimizer, self.x)
fit = self.residual(self.fit_params, self.x)
for name, par in self.fit_params.items():
nout = "%s:%s" % (name, ' '*(20-len(name)))
print("%s: %s (%s) " % (nout, par.value, self.p_true[name].value))
for para, true_para in zip(self.fit_params.values(),
self.p_true.values()):
check_wo_stderr(para, true_para.value)
示例7: CommonMinimizerTest
# 需要导入模块: from lmfit import Minimizer [as 别名]
# 或者: from lmfit.Minimizer import scalar_minimize [as 别名]
class CommonMinimizerTest(unittest.TestCase):
def setUp(self):
"""
test scale minimizers except newton-cg (needs jacobian) and
anneal (doesn't work out of the box).
"""
p_true = Parameters()
p_true.add('amp', value=14.0)
p_true.add('period', value=5.33)
p_true.add('shift', value=0.123)
p_true.add('decay', value=0.010)
self.p_true = p_true
n = 2500
xmin = 0.
xmax = 250.0
noise = np.random.normal(scale=0.7215, size=n)
self.x = np.linspace(xmin, xmax, n)
data = self.residual(p_true, self.x) + noise
fit_params = Parameters()
fit_params.add('amp', value=11.0, min=5, max=20)
fit_params.add('period', value=5., min=1., max=7)
fit_params.add('shift', value=.10, min=0.0, max=0.2)
fit_params.add('decay', value=6.e-3, min=0, max=0.1)
self.fit_params = fit_params
init = self.residual(fit_params, self.x)
self.mini = Minimizer(self.residual, fit_params, [self.x, data])
def residual(self, pars, x, data=None):
amp = pars['amp'].value
per = pars['period'].value
shift = pars['shift'].value
decay = pars['decay'].value
if abs(shift) > pi/2:
shift = shift - np.sign(shift) * pi
model = amp*np.sin(shift + x/per) * np.exp(-x*x*decay*decay)
if data is None:
return model
return (model - data)
def test_diffev_bounds_check(self):
# You need finite (min, max) for each parameter if you're using
# differential_evolution.
self.fit_params['decay'].min = None
self.minimizer = 'differential_evolution'
np.testing.assert_raises(ValueError, self.scalar_minimizer)
def test_scalar_minimizers(self):
# test all the scalar minimizers
for method in SCALAR_METHODS:
if method in ['newton', 'dogleg', 'trust-ncg']:
continue
self.minimizer = SCALAR_METHODS[method]
if method == 'Nelder-Mead':
sig = 0.2
else:
sig = 0.15
self.scalar_minimizer(sig=sig)
def scalar_minimizer(self, sig=0.15):
try:
from scipy.optimize import minimize as scipy_minimize
except ImportError:
raise SkipTest
print(self.minimizer)
out = self.mini.scalar_minimize(method=self.minimizer)
fit = self.residual(out.params, self.x)
for name, par in out.params.items():
nout = "%s:%s" % (name, ' '*(20-len(name)))
print("%s: %s (%s) " % (nout, par.value, self.p_true[name].value))
for para, true_para in zip(out.params.values(),
self.p_true.values()):
check_wo_stderr(para, true_para.value, sig=sig)
示例8: CommonMinimizerTest
# 需要导入模块: from lmfit import Minimizer [as 别名]
# 或者: from lmfit.Minimizer import scalar_minimize [as 别名]
class CommonMinimizerTest(unittest.TestCase):
def setUp(self):
"""
test scale minimizers except newton-cg (needs jacobian) and
anneal (doesn't work out of the box).
"""
p_true = Parameters()
p_true.add('amp', value=14.0)
p_true.add('period', value=5.33)
p_true.add('shift', value=0.123)
p_true.add('decay', value=0.010)
self.p_true = p_true
n = 2500
xmin = 0.
xmax = 250.0
noise = np.random.normal(scale=0.7215, size=n)
self.x = np.linspace(xmin, xmax, n)
self.data = self.residual(p_true, self.x) + noise
fit_params = Parameters()
fit_params.add('amp', value=11.0, min=5, max=20)
fit_params.add('period', value=5., min=1., max=7)
fit_params.add('shift', value=.10, min=0.0, max=0.2)
fit_params.add('decay', value=6.e-3, min=0, max=0.1)
self.fit_params = fit_params
self.mini = Minimizer(self.residual, fit_params, [self.x, self.data])
def residual(self, pars, x, data=None):
amp = pars['amp'].value
per = pars['period'].value
shift = pars['shift'].value
decay = pars['decay'].value
if abs(shift) > pi/2:
shift = shift - np.sign(shift) * pi
model = amp*np.sin(shift + x/per) * np.exp(-x*x*decay*decay)
if data is None:
return model
return model - data
def test_diffev_bounds_check(self):
# You need finite (min, max) for each parameter if you're using
# differential_evolution.
self.fit_params['decay'].min = None
self.minimizer = 'differential_evolution'
np.testing.assert_raises(ValueError, self.scalar_minimizer)
def test_scalar_minimizers(self):
# test all the scalar minimizers
for method in SCALAR_METHODS:
if method in ['newton', 'dogleg', 'trust-ncg']:
continue
self.minimizer = SCALAR_METHODS[method]
if method == 'Nelder-Mead':
sig = 0.2
else:
sig = 0.15
self.scalar_minimizer(sig=sig)
def scalar_minimizer(self, sig=0.15):
try:
from scipy.optimize import minimize as scipy_minimize
except ImportError:
raise SkipTest
print(self.minimizer)
out = self.mini.scalar_minimize(method=self.minimizer)
self.residual(out.params, self.x)
for name, par in out.params.items():
nout = "%s:%s" % (name, ' '*(20-len(name)))
print("%s: %s (%s) " % (nout, par.value, self.p_true[name].value))
for para, true_para in zip(out.params.values(),
self.p_true.values()):
check_wo_stderr(para, true_para.value, sig=sig)
@decorators.slow
def test_emcee(self):
# test emcee
if not HAS_EMCEE:
return True
np.random.seed(123456)
out = self.mini.emcee(nwalkers=100, steps=200,
burn=50, thin=10)
check_paras(out.params, self.p_true, sig=3)
@decorators.slow
def test_emcee_PT(self):
# test emcee with parallel tempering
if not HAS_EMCEE:
return True
np.random.seed(123456)
#.........这里部分代码省略.........