当前位置: 首页>>代码示例>>Python>>正文


Python LightFM.predict方法代码示例

本文整理汇总了Python中lightfm.lightfm.LightFM.predict方法的典型用法代码示例。如果您正苦于以下问题:Python LightFM.predict方法的具体用法?Python LightFM.predict怎么用?Python LightFM.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lightfm.lightfm.LightFM的用法示例。


在下文中一共展示了LightFM.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_user_supplied_features_accuracy

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_user_supplied_features_accuracy():

    model = LightFM(random_state=SEED)
    model.fit_partial(
        train,
        user_features=train_user_features,
        item_features=train_item_features,
        epochs=10,
    )

    train_predictions = model.predict(
        train.row,
        train.col,
        user_features=train_user_features,
        item_features=train_item_features,
    )
    test_predictions = model.predict(
        test.row,
        test.col,
        user_features=test_user_features,
        item_features=test_item_features,
    )

    assert roc_auc_score(train.data, train_predictions) > 0.84
    assert roc_auc_score(test.data, test_predictions) > 0.76
开发者ID:linggom,项目名称:lightfm,代码行数:27,代码来源:test_movielens.py

示例2: test_matrix_types

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_matrix_types():

    mattypes = (sp.coo_matrix, sp.lil_matrix, sp.csr_matrix, sp.csc_matrix)

    dtypes = (np.int32, np.int64, np.float32, np.float64)

    no_users, no_items = (10, 100)
    no_features = 20

    for mattype in mattypes:
        for dtype in dtypes:
            train = mattype((no_users, no_items), dtype=dtype)
            weights = train.tocoo()

            user_features = mattype((no_users, no_features), dtype=dtype)
            item_features = mattype((no_items, no_features), dtype=dtype)

            model = LightFM()
            model.fit_partial(
                train,
                sample_weight=weights,
                user_features=user_features,
                item_features=item_features,
            )

            model.predict(
                np.random.randint(0, no_users, 10).astype(np.int32),
                np.random.randint(0, no_items, 10).astype(np.int32),
                user_features=user_features,
                item_features=item_features,
            )

            model.predict_rank(
                train, user_features=user_features, item_features=item_features
            )
开发者ID:linggom,项目名称:lightfm,代码行数:37,代码来源:test_api.py

示例3: test_movielens_accuracy

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_movielens_accuracy():

    model = LightFM(random_state=SEED)
    model.fit_partial(train, epochs=10)

    train_predictions = model.predict(train.row, train.col)
    test_predictions = model.predict(test.row, test.col)

    assert roc_auc_score(train.data, train_predictions) > 0.84
    assert roc_auc_score(test.data, test_predictions) > 0.76
开发者ID:linggom,项目名称:lightfm,代码行数:12,代码来源:test_movielens.py

示例4: test_hogwild_accuracy

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_hogwild_accuracy():

    # Should get comparable accuracy with 2 threads
    model = LightFM(random_state=SEED)
    model.fit_partial(train, epochs=10, num_threads=2)

    train_predictions = model.predict(train.row, train.col, num_threads=2)
    test_predictions = model.predict(test.row, test.col, num_threads=2)

    assert roc_auc_score(train.data, train_predictions) > 0.84
    assert roc_auc_score(test.data, test_predictions) > 0.76
开发者ID:linggom,项目名称:lightfm,代码行数:13,代码来源:test_movielens.py

示例5: test_movielens_accuracy_pickle

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_movielens_accuracy_pickle():

    model = LightFM(random_state=SEED)
    model.fit(train, epochs=10)

    model = pickle.loads(pickle.dumps(model))

    train_predictions = model.predict(train.row, train.col)
    test_predictions = model.predict(test.row, test.col)

    assert roc_auc_score(train.data, train_predictions) > 0.84
    assert roc_auc_score(test.data, test_predictions) > 0.76
开发者ID:linggom,项目名称:lightfm,代码行数:14,代码来源:test_movielens.py

示例6: test_regularization

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_regularization():

    # Let's regularize
    model = LightFM(
        no_components=50, item_alpha=0.0001, user_alpha=0.0001, random_state=SEED
    )
    model.fit_partial(train, epochs=30)

    train_predictions = model.predict(train.row, train.col)
    test_predictions = model.predict(test.row, test.col)

    assert roc_auc_score(train.data, train_predictions) > 0.80
    assert roc_auc_score(test.data, test_predictions) > 0.75
开发者ID:linggom,项目名称:lightfm,代码行数:15,代码来源:test_movielens.py

示例7: test_zeros_negative_accuracy

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_zeros_negative_accuracy():

    # Should get the same accuracy when zeros are used to
    # denote negative interactions
    train.data[train.data == -1] = 0
    model = LightFM(random_state=SEED)
    model.fit_partial(train, epochs=10)

    train_predictions = model.predict(train.row, train.col)
    test_predictions = model.predict(test.row, test.col)

    assert roc_auc_score(train.data, train_predictions) > 0.84
    assert roc_auc_score(test.data, test_predictions) > 0.76
开发者ID:linggom,项目名称:lightfm,代码行数:15,代码来源:test_movielens.py

示例8: test_predict

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_predict():

    no_users, no_items = (10, 100)

    train = sp.coo_matrix((no_users, no_items), dtype=np.int32)

    model = LightFM()
    model.fit_partial(train)

    for uid in range(no_users):
        scores_arr = model.predict(np.repeat(uid, no_items), np.arange(no_items))
        scores_int = model.predict(uid, np.arange(no_items))
        assert np.allclose(scores_arr, scores_int)
开发者ID:linggom,项目名称:lightfm,代码行数:15,代码来源:test_api.py

示例9: test_overfitting

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_overfitting():

    # Let's massivly overfit
    model = LightFM(no_components=50, random_state=SEED)
    model.fit_partial(train, epochs=30)

    train_predictions = model.predict(train.row, train.col)
    test_predictions = model.predict(test.row, test.col)
    overfit_train = roc_auc_score(train.data, train_predictions)
    overfit_test = roc_auc_score(test.data, test_predictions)

    assert overfit_train > 0.99
    assert overfit_test < 0.75
开发者ID:linggom,项目名称:lightfm,代码行数:15,代码来源:test_movielens.py

示例10: test_predict_not_fitted

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_predict_not_fitted():

    model = LightFM()

    with pytest.raises(ValueError):
        model.predict(np.arange(10), np.arange(10))

    with pytest.raises(ValueError):
        model.predict_rank(1)

    with pytest.raises(ValueError):
        model.get_user_representations()

    with pytest.raises(ValueError):
        model.get_item_representations()
开发者ID:linggom,项目名称:lightfm,代码行数:17,代码来源:test_api.py

示例11: test_get_representations

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_get_representations():

    model = LightFM(random_state=SEED)
    model.fit_partial(train, epochs=10)

    num_users, num_items = train.shape

    for (item_features, user_features) in (
        (None, None),
        (
            (sp.identity(num_items) + sp.random(num_items, num_items)),
            (sp.identity(num_users) + sp.random(num_users, num_users)),
        ),
    ):

        test_predictions = model.predict(
            test.row, test.col, user_features=user_features, item_features=item_features
        )

        item_biases, item_latent = model.get_item_representations(item_features)
        user_biases, user_latent = model.get_user_representations(user_features)

        assert item_latent.dtype == np.float32
        assert user_latent.dtype == np.float32

        predictions = (
            (user_latent[test.row] * item_latent[test.col]).sum(axis=1)
            + user_biases[test.row]
            + item_biases[test.col]
        )

        assert np.allclose(test_predictions, predictions, atol=0.000001)
开发者ID:linggom,项目名称:lightfm,代码行数:34,代码来源:test_movielens.py

示例12: test_movielens_genre_accuracy

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_movielens_genre_accuracy():

    item_features = fetch_movielens(indicator_features=False, genre_features=True)[
        "item_features"
    ]

    assert item_features.shape[1] < item_features.shape[0]

    model = LightFM(random_state=SEED)
    model.fit_partial(train, item_features=item_features, epochs=10)

    train_predictions = model.predict(train.row, train.col, item_features=item_features)
    test_predictions = model.predict(test.row, test.col, item_features=item_features)

    assert roc_auc_score(train.data, train_predictions) > 0.75
    assert roc_auc_score(test.data, test_predictions) > 0.69
开发者ID:linggom,项目名称:lightfm,代码行数:18,代码来源:test_movielens.py

示例13: test_zero_weights_accuracy

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_zero_weights_accuracy():

    # When very small weights are used
    # accuracy should be no better than
    # random.
    weights = train.copy()
    weights.data = np.zeros(train.getnnz(), dtype=np.float32)

    for loss in ("logistic", "bpr", "warp"):
        model = LightFM(loss=loss, random_state=SEED)
        model.fit_partial(train, sample_weight=weights, epochs=10)

        train_predictions = model.predict(train.row, train.col)
        test_predictions = model.predict(test.row, test.col)

        assert 0.45 < roc_auc_score(train.data, train_predictions) < 0.55
        assert 0.45 < roc_auc_score(test.data, test_predictions) < 0.55
开发者ID:linggom,项目名称:lightfm,代码行数:19,代码来源:test_movielens.py

示例14: test_movielens_both_accuracy

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_movielens_both_accuracy():
    """
    Accuracy with both genre metadata and item-specific
    features shoul be no worse than with just item-specific
    features (though more training may be necessary).
    """

    item_features = fetch_movielens(indicator_features=True, genre_features=True)[
        "item_features"
    ]

    model = LightFM(random_state=SEED)
    model.fit_partial(train, item_features=item_features, epochs=15)

    train_predictions = model.predict(train.row, train.col, item_features=item_features)
    test_predictions = model.predict(test.row, test.col, item_features=item_features)

    assert roc_auc_score(train.data, train_predictions) > 0.84
    assert roc_auc_score(test.data, test_predictions) > 0.75
开发者ID:linggom,项目名称:lightfm,代码行数:21,代码来源:test_movielens.py

示例15: test_movielens_excessive_regularization

# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import predict [as 别名]
def test_movielens_excessive_regularization():

    for loss in ("logistic", "warp", "bpr", "warp-kos"):

        # Should perform poorly with high regularization.
        # Check that regularization does not accumulate
        # until it reaches infinity.
        model = LightFM(
            no_components=10,
            item_alpha=1.0,
            user_alpha=1.0,
            loss=loss,
            random_state=SEED,
        )
        model.fit_partial(train, epochs=10, num_threads=4)

        train_predictions = model.predict(train.row, train.col)
        test_predictions = model.predict(test.row, test.col)

        assert roc_auc_score(train.data, train_predictions) < 0.65
        assert roc_auc_score(test.data, test_predictions) < 0.65
开发者ID:linggom,项目名称:lightfm,代码行数:23,代码来源:test_movielens.py


注:本文中的lightfm.lightfm.LightFM.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。