本文整理汇总了Python中lightfm.lightfm.LightFM.fit_partial方法的典型用法代码示例。如果您正苦于以下问题:Python LightFM.fit_partial方法的具体用法?Python LightFM.fit_partial怎么用?Python LightFM.fit_partial使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类lightfm.lightfm.LightFM
的用法示例。
在下文中一共展示了LightFM.fit_partial方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_user_supplied_features_accuracy
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_user_supplied_features_accuracy():
model = LightFM(random_state=SEED)
model.fit_partial(
train,
user_features=train_user_features,
item_features=train_item_features,
epochs=10,
)
train_predictions = model.predict(
train.row,
train.col,
user_features=train_user_features,
item_features=train_item_features,
)
test_predictions = model.predict(
test.row,
test.col,
user_features=test_user_features,
item_features=test_item_features,
)
assert roc_auc_score(train.data, train_predictions) > 0.84
assert roc_auc_score(test.data, test_predictions) > 0.76
示例2: test_recall_at_k
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_recall_at_k():
no_users, no_items = (10, 100)
train, test = _generate_data(no_users, no_items)
model = LightFM(loss="bpr")
model.fit_partial(test)
for k in (10, 5, 1):
# Without omitting train interactions
recall = evaluation.recall_at_k(model, test, k=k)
expected_mean_recall = _recall_at_k(model, test, k)
assert np.allclose(recall.mean(), expected_mean_recall)
assert len(recall) == (test.getnnz(axis=1) > 0).sum()
assert (
len(evaluation.recall_at_k(model, train, preserve_rows=True))
== test.shape[0]
)
# With omitting train interactions
recall = evaluation.recall_at_k(model, test, k=k, train_interactions=train)
expected_mean_recall = _recall_at_k(model, test, k, train=train)
assert np.allclose(recall.mean(), expected_mean_recall)
示例3: test_get_representations
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_get_representations():
model = LightFM(random_state=SEED)
model.fit_partial(train, epochs=10)
num_users, num_items = train.shape
for (item_features, user_features) in (
(None, None),
(
(sp.identity(num_items) + sp.random(num_items, num_items)),
(sp.identity(num_users) + sp.random(num_users, num_users)),
),
):
test_predictions = model.predict(
test.row, test.col, user_features=user_features, item_features=item_features
)
item_biases, item_latent = model.get_item_representations(item_features)
user_biases, user_latent = model.get_user_representations(user_features)
assert item_latent.dtype == np.float32
assert user_latent.dtype == np.float32
predictions = (
(user_latent[test.row] * item_latent[test.col]).sum(axis=1)
+ user_biases[test.row]
+ item_biases[test.col]
)
assert np.allclose(test_predictions, predictions, atol=0.000001)
示例4: test_matrix_types
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_matrix_types():
mattypes = (sp.coo_matrix, sp.lil_matrix, sp.csr_matrix, sp.csc_matrix)
dtypes = (np.int32, np.int64, np.float32, np.float64)
no_users, no_items = (10, 100)
no_features = 20
for mattype in mattypes:
for dtype in dtypes:
train = mattype((no_users, no_items), dtype=dtype)
weights = train.tocoo()
user_features = mattype((no_users, no_features), dtype=dtype)
item_features = mattype((no_items, no_features), dtype=dtype)
model = LightFM()
model.fit_partial(
train,
sample_weight=weights,
user_features=user_features,
item_features=item_features,
)
model.predict(
np.random.randint(0, no_users, 10).astype(np.int32),
np.random.randint(0, no_items, 10).astype(np.int32),
user_features=user_features,
item_features=item_features,
)
model.predict_rank(
train, user_features=user_features, item_features=item_features
)
示例5: test_precision_at_k
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_precision_at_k():
no_users, no_items = (10, 100)
train, test = _generate_data(no_users, no_items)
model = LightFM(loss="bpr")
# We want a high precision to catch the k=1 case
model.fit_partial(test)
for k in (10, 5, 1):
# Without omitting train interactions
precision = evaluation.precision_at_k(model, test, k=k)
expected_mean_precision = _precision_at_k(model, test, k)
assert np.allclose(precision.mean(), expected_mean_precision)
assert len(precision) == (test.getnnz(axis=1) > 0).sum()
assert (
len(evaluation.precision_at_k(model, train, preserve_rows=True))
== test.shape[0]
)
# With omitting train interactions
precision = evaluation.precision_at_k(
model, test, k=k, train_interactions=train
)
expected_mean_precision = _precision_at_k(model, test, k, train=train)
assert np.allclose(precision.mean(), expected_mean_precision)
示例6: test_empty_matrix
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_empty_matrix():
no_users, no_items = (10, 100)
train = sp.coo_matrix((no_users, no_items), dtype=np.int32)
model = LightFM()
model.fit_partial(train)
示例7: test_intersections_check
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_intersections_check():
no_users, no_items = (10, 100)
train, test = _generate_data(no_users, no_items)
model = LightFM(loss="bpr")
model.fit_partial(train)
# check error is raised when train and test have interactions in common
with pytest.raises(ValueError):
evaluation.auc_score(
model, train, train_interactions=train, check_intersections=True
)
with pytest.raises(ValueError):
evaluation.recall_at_k(
model, train, train_interactions=train, check_intersections=True
)
with pytest.raises(ValueError):
evaluation.precision_at_k(
model, train, train_interactions=train, check_intersections=True
)
with pytest.raises(ValueError):
evaluation.reciprocal_rank(
model, train, train_interactions=train, check_intersections=True
)
# check no errors raised when train and test have no interactions in common
evaluation.auc_score(
model, test, train_interactions=train, check_intersections=True
)
evaluation.recall_at_k(
model, test, train_interactions=train, check_intersections=True
)
evaluation.precision_at_k(
model, test, train_interactions=train, check_intersections=True
)
evaluation.reciprocal_rank(
model, test, train_interactions=train, check_intersections=True
)
# check no error is raised when there are intersections but flag is False
evaluation.auc_score(
model, train, train_interactions=train, check_intersections=False
)
evaluation.recall_at_k(
model, train, train_interactions=train, check_intersections=False
)
evaluation.precision_at_k(
model, train, train_interactions=train, check_intersections=False
)
evaluation.reciprocal_rank(
model, train, train_interactions=train, check_intersections=False
)
示例8: test_movielens_accuracy
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_movielens_accuracy():
model = LightFM(random_state=SEED)
model.fit_partial(train, epochs=10)
train_predictions = model.predict(train.row, train.col)
test_predictions = model.predict(test.row, test.col)
assert roc_auc_score(train.data, train_predictions) > 0.84
assert roc_auc_score(test.data, test_predictions) > 0.76
示例9: test_hogwild_accuracy
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_hogwild_accuracy():
# Should get comparable accuracy with 2 threads
model = LightFM(random_state=SEED)
model.fit_partial(train, epochs=10, num_threads=2)
train_predictions = model.predict(train.row, train.col, num_threads=2)
test_predictions = model.predict(test.row, test.col, num_threads=2)
assert roc_auc_score(train.data, train_predictions) > 0.84
assert roc_auc_score(test.data, test_predictions) > 0.76
示例10: test_warp_stability
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_warp_stability():
learning_rates = (0.05, 0.1, 0.5)
for lrate in learning_rates:
model = LightFM(learning_rate=lrate, loss="warp", random_state=SEED)
model.fit_partial(train, epochs=10)
assert not np.isnan(model.user_embeddings).any()
assert not np.isnan(model.item_embeddings).any()
示例11: test_random_state_fixing
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_random_state_fixing():
model = LightFM(learning_rate=0.05, loss="warp", random_state=SEED)
model.fit_partial(train, epochs=2)
model_2 = LightFM(learning_rate=0.05, loss="warp", random_state=SEED)
model_2.fit_partial(train, epochs=2)
assert np.all(model.user_embeddings == model_2.user_embeddings)
assert np.all(model.item_embeddings == model_2.item_embeddings)
示例12: test_zeros_negative_accuracy
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_zeros_negative_accuracy():
# Should get the same accuracy when zeros are used to
# denote negative interactions
train.data[train.data == -1] = 0
model = LightFM(random_state=SEED)
model.fit_partial(train, epochs=10)
train_predictions = model.predict(train.row, train.col)
test_predictions = model.predict(test.row, test.col)
assert roc_auc_score(train.data, train_predictions) > 0.84
assert roc_auc_score(test.data, test_predictions) > 0.76
示例13: test_overfitting
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_overfitting():
# Let's massivly overfit
model = LightFM(no_components=50, random_state=SEED)
model.fit_partial(train, epochs=30)
train_predictions = model.predict(train.row, train.col)
test_predictions = model.predict(test.row, test.col)
overfit_train = roc_auc_score(train.data, train_predictions)
overfit_test = roc_auc_score(test.data, test_predictions)
assert overfit_train > 0.99
assert overfit_test < 0.75
示例14: test_regularization
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_regularization():
# Let's regularize
model = LightFM(
no_components=50, item_alpha=0.0001, user_alpha=0.0001, random_state=SEED
)
model.fit_partial(train, epochs=30)
train_predictions = model.predict(train.row, train.col)
test_predictions = model.predict(test.row, test.col)
assert roc_auc_score(train.data, train_predictions) > 0.80
assert roc_auc_score(test.data, test_predictions) > 0.75
示例15: test_predict
# 需要导入模块: from lightfm.lightfm import LightFM [as 别名]
# 或者: from lightfm.lightfm.LightFM import fit_partial [as 别名]
def test_predict():
no_users, no_items = (10, 100)
train = sp.coo_matrix((no_users, no_items), dtype=np.int32)
model = LightFM()
model.fit_partial(train)
for uid in range(no_users):
scores_arr = model.predict(np.repeat(uid, no_items), np.arange(no_items))
scores_int = model.predict(uid, np.arange(no_items))
assert np.allclose(scores_arr, scores_int)