当前位置: 首页>>代码示例>>Python>>正文


Python Group.dy方法代码示例

本文整理汇总了Python中larch.Group.dy方法的典型用法代码示例。如果您正苦于以下问题:Python Group.dy方法的具体用法?Python Group.dy怎么用?Python Group.dy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在larch.Group的用法示例。


在下文中一共展示了Group.dy方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fit_peak

# 需要导入模块: from larch import Group [as 别名]
# 或者: from larch.Group import dy [as 别名]
def fit_peak(x, y, model, dy=None, background=None, step=None,
             negative=False, use_gamma=False, _larch=None):
    """fit peak to one a selection of simple 1d models

    out = fit_peak(x, y, model, dy=None,
                   background='linear', step='linear')

    arguments:
    ---------
    x           array of values at which to calculate model
    y           array of values for model to try to match
    dy          array of values for uncertainty in y data to be matched.
    model       name of model to use.  One of (case insensitive)
                     'linear', 'quadratic', 'step', 'rectangle',
                      'gaussian', 'lorentzian', 'voigt', 'exponential'
    background  name of background model to use. One of (case insensitive)
                     None, 'constant', 'linear', or 'quadratic'
                this is ignored when model is 'linear' or 'quadratic'
    step        name of step model to use for 'step' and 'rectangle' models.
                One of (case insensitive):
                    'linear', 'erf', or 'atan'
    negative    True/False for whether peak or steps are expected to go down.
    use_gamma   True/False for whether to use separate gamma parameter for
                voigt model.
    output:
    -------
    Group with fit parameters, and more...
    """
    out = Group(x=x*1.0, y=y*1.0, dy=1.0, model=model,
                background=background, step=step)
    if dy is not None:
        out.dy = 1.0*dy
    if model.lower() not in MODELS:
        _larch.writer.write('Unknown fit model: %s ' % model)
        return None

    kwargs = dict(negative=negative, background=background,
                  step=step, _larch=_larch)

    fitclass = MODELS[model.lower()]
    if fitclass == VoigtModel:
        kwargs['use_gamma'] = use_gamma

    mod = fitclass(**kwargs)
    mod.guess_starting_values(out.y, out.x)

    out.fit_init = mod.model(x=out.x)
    if background is not None:
        out.bkg_init = mod.calc_background(out.x)
        out.fit_init += out.bkg_init

    mod.fit(out.y, x=out.x, dy=out.dy, _larch=_larch)

    out.fit = mod.model(x=out.x)
    if background is not None:
        out.bkg = mod.calc_background(out.x)
        out.fit += out.bkg
    out.params = mod.params
    return out
开发者ID:Henry0422,项目名称:xraylarch,代码行数:61,代码来源:fitpeak.py

示例2: fit_peak

# 需要导入模块: from larch import Group [as 别名]
# 或者: from larch.Group import dy [as 别名]
def fit_peak(x, y, model, dy=None, background=None, form=None, step=None,
             negative=False, use_gamma=False, _larch=None):
    """fit peak to one a selection of simple 1d models

    out = fit_peak(x, y, model, dy=None,
                   background='linear', form='linear')

    arguments:
    ---------
    x           array of values at which to calculate model
    y           array of values for model to try to match
    dy          array of values for uncertainty in y data to be matched.
    model       name of model to use.  One of (case insensitive)
                     'linear', 'quadratic', 'step', 'rectangle',
                      'gaussian', 'lorentzian', 'voigt', 'exponential'
    background  name of background model to use. One of (case insensitive)
                     None, 'constant', 'linear', or 'quadratic'
                this is ignored when model is 'linear' or 'quadratic'
    form        name of form to use for 'step' and 'rectangle' models.
                One of (case insensitive):
                    'linear', 'erf', or 'atan'
    negative    True/False for whether peak or steps are expected to go down.
    use_gamma   True/False for whether to use separate gamma parameter for
                voigt model.
    output:
    -------
    Group with fit parameters, and more...
    """
    if form is None and step is not None:
        form = step
    out = Group(name='fit_peak result', x=x*1.0, y=y*1.0, dy=1.0,
                model=model, background=background, form=form)

    weight = None
    if dy is not None:
        out.dy = 1.0*dy
        weight = 1.0/max(1.e-16, abs(dy))

    if model.lower() not in MODELS:
        _larch.writer.write('Unknown fit model: %s ' % model)
        return None

    kwargs = dict(negative=negative, background=background,
                  form=form, weight=weight, _larch=_larch)

    fitclass = MODELS[model.lower()]
    if fitclass == VoigtModel:
        kwargs['use_gamma'] = use_gamma

    mod = fitclass(**kwargs)
    pars = mod.guess(out.y, out.x)

    if background is not None:
        bkg = MODELS[background.lower()](prefix='bkg_')
        bpars = bkg.guess(out.y, x=out.x)
        for p, par  in bpars.items():
            par.value = 0.
            par.vary = True
        pars += bpars
        mod += bkg

    out.init_params = pars

    result = mod.fit(out.y, params=pars, x=out.x) # , dy=out.dy)
    out.fit = mod.eval(result.params, x=out.x)
    out.fit_init = mod.eval(pars, x=out.x)

    out.fit_details = result
    out.chi_square  = result.chisqr
    out.chi_reduced = result.redchi

    for attr in ('aic', 'bic', 'covar', 'rfactor', 'params', 'nvarys',
                 'nfree', 'ndata', 'var_names', 'nfev', 'success',
                 'errorbars', 'message', 'lmdif_message', 'residual'):
        setattr(out, attr, getattr(result, attr, None))

    if background is not None:
        comps = mod.eval_components(x=out.x)
        out.bkg = comps['bkg_']
    return out
开发者ID:maurov,项目名称:xraylarch,代码行数:82,代码来源:fitpeak.py


注:本文中的larch.Group.dy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。