当前位置: 首页>>代码示例>>Python>>正文


Python PolyRing.gens方法代码示例

本文整理汇总了Python中jas.PolyRing.gens方法的典型用法代码示例。如果您正苦于以下问题:Python PolyRing.gens方法的具体用法?Python PolyRing.gens怎么用?Python PolyRing.gens使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在jas.PolyRing的用法示例。


在下文中一共展示了PolyRing.gens方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testRingQQ

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
 def testRingQQ(self):
     r = PolyRing( QQ(), "(t,x)", Order.INVLEX );
     self.assertEqual(str(r),'PolyRing(QQ(),"t,x",Order.INVLEX)');
     [one,x,t] = r.gens();
     self.assertTrue(one.isONE());
     self.assertTrue(len(x)==1);
     self.assertTrue(len(t)==1);
     #
     f = 11 * x**4 - 13 * t * x**2 - 11 * x**2 + 2 * t**2 + 11 * t;
     f = f**2 + f + 3;
     #print "f = " + str(f);
     self.assertEqual(str(f),'( 4 * x**4 - 52 * t**2 * x**3 + 44 * x**3 + 213 * t**4 * x**2 - 330 * t**2 * x**2 + 123 * x**2 - 286 * t**6 * x + 528 * t**4 * x - 255 * t**2 * x + 11 * x + 121 * t**8 - 242 * t**6 + 132 * t**4 - 11 * t**2 + 3 )');
开发者ID:rjolly,项目名称:jas,代码行数:14,代码来源:RingElemTest.py

示例2: testRingZM

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
 def testRingZM(self):
     r = PolyRing( GF(17), "(t,x)", Order.INVLEX );
     self.assertEqual(str(r),'PolyRing(GFI(17),"t,x",Order.INVLEX)');
     [one,x,t] = r.gens();
     self.assertTrue(one.isONE());
     self.assertTrue(len(x)==1);
     self.assertTrue(len(t)==1);
     #
     f = 11 * x**4 - 13 * t * x**2 - 11 * x**2 + 2 * t**2 + 11 * t;
     f = f**2 + f + 3;
     #print "f = " + str(f);
     self.assertEqual(str(f),'( 4 * x**4 + 16 * t**2 * x**3 + 10 * x**3 + 9 * t**4 * x**2 + 10 * t**2 * x**2 + 4 * x**2 + 3 * t**6 * x + t**4 * x + 11 * x + 2 * t**8 + 13 * t**6 + 13 * t**4 + 6 * t**2 + 3 )');
开发者ID:rjolly,项目名称:jas,代码行数:14,代码来源:RingElemTest.py

示例3: PolyRing

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
#

import sys;

from jas import Ring, PolyRing, ParamIdeal, QQ
from jas import startLog, terminate


# Raksanyi & Walter example
# integral/rational function coefficients


r = PolyRing(PolyRing(QQ(),"a1,a2,a3,a4",PolyRing.grad),"x1,x2,x3,x4",PolyRing.lex);
#print "r  = " + str(r);

[one,a1,a2,a3,a4,x1,x2,x3,x4] = r.gens();

pl = [ ( x4 - ( a4 - a2 ) ),
      ( x1 + x2 + x3 + x4 - ( a1 + a3 + a4 ) ),
      ( x1 * x3 + x1 * x4 + x2 * x3 + x3 * x4 - ( a1 * a4 + a1 * a3 + a3 * a4 ) ),
      ( x1 * x3 * x4 - ( a1 * a3 * a4 ) ) 
     ];
f = ParamIdeal(r,list=pl);
print "ParamIdeal: " + str(f);

gs = f.CGBsystem();
#print "CGBsystem: " + str(gs);
#print;

print f.CGB();
开发者ID:,项目名称:,代码行数:32,代码来源:

示例4: Z_p

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
from java.lang import System
from java.lang import Integer

from jas import Ring
from jas import PolyRing
from jas import Ideal
from jas import ZM, QQ, AN, RF
from jas import terminate
from jas import startLog

# polynomial examples: factorization over Z_p(x)(sqrt3(x))[y]

Q = PolyRing(ZM(5),"x",PolyRing.lex);
print "Q     = " + str(Q);
[e,a] = Q.gens();
#print "e     = " + str(e);
print "a     = " + str(a);

Qr = RF(Q);
print "Qr    = " + str(Qr.factory());
[er,ar] = Qr.gens();
#print "er    = " + str(er);
#print "ar    = " + str(ar);
print;

Qwx = PolyRing(Qr,"wx",PolyRing.lex);
print "Qwx   = " + str(Qwx);
[ewx,ax,wx] = Qwx.gens();
#print "ewx   = " + str(ewx);
print "ax    = " + str(ax);
开发者ID:,项目名称:,代码行数:32,代码来源:

示例5: PolyRing

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
#

import sys

from java.lang import System

from jas import PolyRing, Ideal
from jas import QQ, AN, RF
from jas import terminate, startLog

# polynomial examples: prime/primary decomposition in Q[w2,x,wx,y,z]

Q = PolyRing(QQ(), "w2,x,wx,y,z", PolyRing.lex)
print "Q     = " + str(Q)

[e, w2, x, wx, y, z] = Q.gens()
print "e     = " + str(e)
print "w2    = " + str(w2)
print "x     = " + str(x)
print "wx    = " + str(wx)
print "y     = " + str(y)
print "z     = " + str(z)
print

w1 = w2 ** 2 - 2
w2 = wx ** 2 - x
f1 = (y ** 2 - x) * (y ** 2 - 2)
# f1 = ( y**2 - x )**3 * ( y**2 - 2 )**2;
f2 = z ** 2 - y ** 2

print "w1 = ", w1
开发者ID:rjolly,项目名称:jas,代码行数:33,代码来源:prime-decomp_algeb_trans-plain.py

示例6: str

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
print "o1 = " + str(o1);
o2 = (1/o1)**2;
print "o2 = " + str(o2);
o3 = o2 * o1 * o1;
print "o3 = " + str(o3);
o4 = (-69,20164)*oneOR + (-3,20164)*IOR + (-1,5041)*JOR + (-5,20164)*KOR  + (-3,10082)*oneOI + (-7,20164)*IOI + (-2,5041)*JOI + (-9,20164)*KOI;
print "o4 = " + str(o4);
o5 = o2 - o4;
print "o5  = " + str(o5);
print;


print "------- PolyRing(ZZ(),\"x,y,z\") ---------";
r = PolyRing(ZZ(),"x,y,z",PolyRing.grad);
print "r = " + str(r);
[one,x,y,z] = r.gens();
print "one = " + str(one);
print "x   = " + str(x);
print "y   = " + str(y);
print "z   = " + str(z);
p1 = 2 + 3 * x + 4 * y + 5 * z + ( x + y + z )**2;
print "p1  = " + str(p1);
p2  = z**2 + 2 * y * z + 2 * x * z + y**2 + 2 * x * y + x**2 + 5 * z + 4 * y + 3 * x + 2;
print "p2  = " + str(p2);
p3 = p1 - p2;
print "p3  = " + str(p3);
print "p3.factory() = " + str(p3.factory());
print;


print "------- PolyRing(QQ(),\"x,y,z\") ---------";
开发者ID:siwiwit,项目名称:java-algebra-system,代码行数:33,代码来源:all_rings.py

示例7: str

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
print "zrelations: = " + str( [ str(r) for r in zrelations ] );
print;

pz = SolvPolyRing(QQ(), "x,y,z,t", PolyRing.lex, zrelations);
print "SolvPolyRing: " + str(pz);
print;

pzq = SRF(pz);
print "SolvableQuotientRing: " + str(pzq.ring.toScript); # + ", assoz: " + str(pzq::ring.isAssociative);
#print "gens =" + str( [ str(r) for r in pzq.gens() ] );
print;

pct = PolyRing(pzq,"u,v,w", PolyRing.lex);
#is automatic: [one,x,y,z,t,u,v,w] = p.gens();
print "tgens = " + str( [ str(r) for r in pct.gens() ] );
print;

relations = [#w, v,  v * w - u,
             v, u,  v * u + x,
             w, y,  y * w + y,
             w, z,  z * w - z
            ];

print "relations: = " + str( [ str(r) for r in relations ] );
print;

#startLog();

pt = SolvPolyRing(pzq, "u,v,w", PolyRing.lex, relations);
print "SolvPolyRing: " + str(pt); # + ", is assoz: " + str(pt.ring.isAssociative);
开发者ID:siwiwit,项目名称:java-algebra-system,代码行数:32,代码来源:solv_ore_iter_syz.py

示例8: noThreads

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
from jas import Ring, PolyRing
from jas import terminate, startLog, noThreads

from jas import QQ, ZM, RF, AN

# polynomial examples: ideal radical decomposition, modified from example 8.16 in GB book

# noThreads(); # must be called very early

prime = 5;
cf = ZM(prime);
#cf = QQ();

ca = PolyRing(cf,"a",PolyRing.lex);
#print "ca = " + str(ca);
[ea,aa] = ca.gens();
print "ea   = " + str(ea);
print "aa   = " + str(aa);
print;

#!#roota = aa**prime + 2;
roota = aa**2 + 2;
print "roota = " + str(roota);
Q3a = AN(roota,field=True);
print "Q3a   = " + str(Q3a.factory());

## Q3a = RF(ca);
#print Q3a.gens();

[ea2,aa2] = Q3a.gens();
print "ea2  = " + str(ea2);
开发者ID:,项目名称:,代码行数:33,代码来源:

示例9: noThreads

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
from java.lang import System

from jas import Ring, PolyRing, QQ, ZM, RF, AN, GF
from jas import terminate, startLog, noThreads

# polynomial examples: ideal radical decomposition, example 8.16 in GB book, base field with p-th root

# noThreads(); # must be called very early

prime = 5;
cf = GF(prime);
#cf = QQ();

ca = PolyRing(cf,"t",PolyRing.lex);
print "ca = " + str(ca);
[ea,ta] = ca.gens();
print "ea   = " + str(ea);
print "ta   = " + str(ta);
print;

Qpt = RF(ca);
#print Qpt.gens();

[ea2,ta2] = Qpt.gens();
print "ea2  = " + str(ea2);
print "ta2  = " + str(ta2);
print;

cr = PolyRing(Qpt,"wpt",PolyRing.lex);
print "polynomial quotient ring: " + str(cr);
开发者ID:rjolly,项目名称:jas,代码行数:32,代码来源:radical-decomp_charp_ex816_algeb.py

示例10: PolyRing

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
from basic_sigbased_gb import ggv, ggv_first_implementation
from basic_sigbased_gb import coeff_free_sigbased_gb
from basic_sigbased_gb import arris_algorithm, min_size_mons
from basic_sigbased_gb import f5, f5z

from staggered_linear_basis import staglinbasis


#r = PolyRing( QQ(), "(B,S,T,Z,P,W)", PolyRing.lex );
#r = PolyRing( ZZ(), "(B,S,T,Z,P,W)", PolyRing.lex );
r = PolyRing( ZM(32003), "(B,S,T,Z,P,W)", PolyRing.lex );
#r = PolyRing( ZM(19), "(B,S,T,Z,P,W)", PolyRing.lex );
print "Ring: " + str(r);
print;

[one,B,S,T,Z,P,W] = r.gens();

p1 = 45 * P + 35 * S - 165 * B - 36; 
p2 = 35 * P + 40 * Z + 25 * T - 27 * S;
p3 = 15 * W + 25 * S * P + 30 * Z - 18 * T - 165 * B**2; 
p4 = -9 * W + 15 * T * P + 20 * S * Z; 
p5 = P * W + 2 * T * Z - 11 * B**3;
p6 = 99 * W - 11 * B * S + 3 * B**2;
p7 = 10000 * B**2 + 6600 * B + 2673;

F = [p1,p2,p3,p4,p5,p6,p7];
#F = [p1,p2,p3,p4,p5,p6];

f = r.ideal( list=F );
print "Ideal: " + str(f);
print;
开发者ID:rjolly,项目名称:jas,代码行数:33,代码来源:trinks_sigbased_gb.py

示例11: Z_p

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
from java.lang import System
from java.lang import Integer

from jas import Ring
from jas import PolyRing
from jas import Ideal
from jas import ZM, QQ, AN, RF
from jas import terminate
from jas import startLog

# polynomial examples: factorization over Z_p(sqrt(2))(x)(sqrt(x))[y]

Q = PolyRing(ZM(5), "w2", PolyRing.lex)
print "Q     = " + str(Q)
[e, a] = Q.gens()
# print "e     = " + str(e);
print "a     = " + str(a)

root = a ** 2 - 2
print "root  = " + str(root)
Q2 = AN(root, field=True)
print "Q2    = " + str(Q2.factory())
[one, w2] = Q2.gens()
# print "one   = " + str(one);
# print "w2    = " + str(w2);
print

Qp = PolyRing(Q2, "x", PolyRing.lex)
print "Qp    = " + str(Qp)
[ep, wp, ap] = Qp.gens()
开发者ID:rjolly,项目名称:jas,代码行数:32,代码来源:factors_algeb_trans_algeb_charp.py

示例12: str

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
#print "Ring: " + str(r);
#print;

#r = PolyRing(ZZ(),"B,S,T,Z,P,W",PolyRing.lex);
#r = PolyRing(QQ(),"B,S,T,Z,P,W",PolyRing.lex);
#r = PolyRing(CC(),"B,S,T,Z,P,W",PolyRing.lex);
#r = PolyRing(DD(),"B,S,T,Z,P,W",PolyRing.lex);
#r = PolyRing(ZM(19),"B,S,T,Z,P,W",PolyRing.lex);
#r = PolyRing(ZM(1152921504606846883),"B,S,T,Z,P,W",PolyRing.lex); # 2^60-93
#rc = PolyRing(ZZ(),"e,f",PolyRing.lex);
#rc = PolyRing(QQ(),"e,f",PolyRing.lex);
#r = PolyRing(rc,"B,S,T,Z,P,W",PolyRing.lex);

rqc = PolyRing(ZZ(),"e,f",PolyRing.lex);
print "Q-Ring: " + str(rqc);
print "rqc.gens() = ", [ str(f) for f in rqc.gens() ];
print;
[pone,pe,pf] = rqc.gens();

r = PolyRing(RF(rqc),"B,S,T,Z,P,W",PolyRing.lex);
print "Ring: " + str(r);
print;

# sage like: with generators for the polynomial ring
print "r.gens() = ", [ str(f) for f in r.gens() ];
print;
[one,e,f,B,S,T,Z,P,W] = r.gens();
#[one,B,S,T,Z,P,W] = r.gens();
#[one,I,B,S,T,Z,P,W] = r.gens();

f1 = 45 * P + 35 * S - 165 * B - 36;
开发者ID:rjolly,项目名称:jas,代码行数:33,代码来源:trinks_sym.py

示例13: Ring

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
from jas import Ring, PolyRing
from jas import terminate
from jas import startLog

from jas import QQ, DD

# polynomial examples: real roots over Q for zero dimensional ideal `cyclic5'

# r = Ring( "Q(x) L" );
r = PolyRing(QQ(), "a,b,c,d,e", PolyRing.lex)

print "Ring: " + str(r)
print

[one, a, b, c, d, e] = r.gens()

f1 = a + b + c + d + e
f2 = a * b + b * c + c * d + d * e + e * a
f3 = a * b * c + b * c * d + c * d * e + d * e * a + e * a * b
f4 = a * b * c * d + b * c * d * e + c * d * e * a + d * e * a * b + e * a * b * c
f5 = a * b * c * d * e - 1

print "f1 = ", f1
print "f2 = ", f2
print "f3 = ", f3
print "f4 = ", f4
print "f5 = ", f5
print

F = r.ideal(list=[f1, f2, f3, f4, f5])
开发者ID:rjolly,项目名称:jas,代码行数:32,代码来源:cyclic5_real_roots.py

示例14: Q

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
# $Id$
#

import sys

from java.lang import System

from jas import Ring, PolyRing
from jas import QQ, AN
from jas import terminate, startLog

# polynomial examples: absolute factorization over Q(i)

Qr = PolyRing(QQ(), "i", PolyRing.lex)
print "Qr    = " + str(Qr)
[e, a] = Qr.gens()
print "e     = " + str(e)
print "a     = " + str(a)
print

imag = a ** 2 + 1
print "imag  = " + str(imag)
Qi = AN(imag, field=True)
print "Qi    = " + str(Qi.factory())
[one, i] = Qi.gens()
print "one   = " + str(one)
print "i     = " + str(i)
print

r = PolyRing(Qi, "x", PolyRing.lex)
print "r    = " + str(r)
开发者ID:siwiwit,项目名称:java-algebra-system,代码行数:33,代码来源:factors_abs_complex.py

示例15: PolyRing

# 需要导入模块: from jas import PolyRing [as 别名]
# 或者: from jas.PolyRing import gens [as 别名]
import sys;

from jas import PolyRing, QQ, RF
from jas import startLog
from jas import terminate


# Montes JSC 2002, 33, 183-208, example 11.1
# integral function coefficients

r = PolyRing( PolyRing(QQ(),"c, b, a",PolyRing.lex), "z,y,x", PolyRing.lex );
print "Ring: " + str(r);
print;

#automatic: [one,c,b,a,z,y,x] = r.gens();
print "gens: ", [ str(f) for f in r.gens() ];
print;

f1 =     x + c * y + b * z + a;
f2 = c * x +     y + a * z + b;
f3 = b * x + a * y +     z + c;

F = [f1,f2,f3];

print "F: ", [ str(f) for f in F ];
print;

#startLog();

If = r.paramideal( "", list = F );
print "ParamIdeal: " + str(If);
开发者ID:rjolly,项目名称:jas,代码行数:33,代码来源:montes_ex111.py


注:本文中的jas.PolyRing.gens方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。