本文整理汇总了Python中jas.PolyRing类的典型用法代码示例。如果您正苦于以下问题:Python PolyRing类的具体用法?Python PolyRing怎么用?Python PolyRing使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了PolyRing类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testRingQQ
def testRingQQ(self):
r = PolyRing( QQ(), "(t,x)", Order.INVLEX );
self.assertEqual(str(r),'PolyRing(QQ(),"t,x",Order.INVLEX)');
[one,x,t] = r.gens();
self.assertTrue(one.isONE());
self.assertTrue(len(x)==1);
self.assertTrue(len(t)==1);
#
f = 11 * x**4 - 13 * t * x**2 - 11 * x**2 + 2 * t**2 + 11 * t;
f = f**2 + f + 3;
#print "f = " + str(f);
self.assertEqual(str(f),'( 4 * x**4 - 52 * t**2 * x**3 + 44 * x**3 + 213 * t**4 * x**2 - 330 * t**2 * x**2 + 123 * x**2 - 286 * t**6 * x + 528 * t**4 * x - 255 * t**2 * x + 11 * x + 121 * t**8 - 242 * t**6 + 132 * t**4 - 11 * t**2 + 3 )');
示例2: testRingZM
def testRingZM(self):
r = PolyRing( GF(17), "(t,x)", Order.INVLEX );
self.assertEqual(str(r),'PolyRing(GFI(17),"t,x",Order.INVLEX)');
[one,x,t] = r.gens();
self.assertTrue(one.isONE());
self.assertTrue(len(x)==1);
self.assertTrue(len(t)==1);
#
f = 11 * x**4 - 13 * t * x**2 - 11 * x**2 + 2 * t**2 + 11 * t;
f = f**2 + f + 3;
#print "f = " + str(f);
self.assertEqual(str(f),'( 4 * x**4 + 16 * t**2 * x**3 + 10 * x**3 + 9 * t**4 * x**2 + 10 * t**2 * x**2 + 4 * x**2 + 3 * t**6 * x + t**4 * x + 11 * x + 2 * t**8 + 13 * t**6 + 13 * t**4 + 6 * t**2 + 3 )');
示例3: PolyRing
#
# jython examples for jas.
# $Id$
#
from java.lang import System
from java.lang import Integer
from jas import PolyRing, ZM, QQ
from jas import terminate
from jas import startLog
# polynomial examples: factorization over Z_p
r = PolyRing(ZM(1152921504606846883,field=True),"(x)",PolyRing.lex);
#r = PolyRing(ZM(19),"x",PolyRing.lex );
#r = PolyRing(ZM(23),"x",PolyRing.lex );
print "Ring: " + str(r);
print;
[one,x] = r.gens();
#f = x**4 - 1;
#f = x**3 + 1;
f = x**3 - x - 1;
print "f = ", f;
print;
示例4: Ring
## 3 z_1^2+y_1^2+b \&
## 3z_2^2+y_2^2+b \&
## \end{Equations}
## \end{PossoExample}
import sys;
from jas import Ring, PolyRing, QQ
from jas import startLog, terminate
# Hawes & Gibson example 2
# rational function coefficients
#r = Ring( "IntFunc(a, c, b) (y2, y1, z1, z2, x) G" );
r = PolyRing( PolyRing(QQ(),"a, c, b",PolyRing.lex), "y2, y1, z1, z2, x", PolyRing.grad );
print "Ring: " + str(r);
print;
#[one,a,c,b,y2,y1,z1,z2,x] = r.gens();
p1 = x + 2 * y1 * z1 + 3 * a * y1**2 + 5 * y1**4 + 2 * c * y1;
p2 = x + 2 * y2 * z2 + 3 * a * y2**2 + 5 * y2**4 + 2 * c * y2;
p3 = 2 * z2 + 6 * a * y2 + 20 * y2**3 + 2 * c;
p4 = 3 * z1**2 + y1**2 + b;
p5 = 3 * z2**2 + y2**2 + b;
F = [p1,p2,p3,p4,p5];
g = r.ideal( list=F );
print "Ideal: " + str(g);
示例5: PolyRing
# $Id$
#
import sys;
from jas import Ring, PolyRing, Ideal
from jas import QQ, ZZ
from jas import startLog, terminate
# example: Algebraic Statistics
# Drton, Sturmfels, Sullivant, example 2.1.3
#r = PolyRing(QQ(),"l1,l2",PolyRing.grad);
r = PolyRing(QQ(),"l1,l2",PolyRing.lex);
print "Ring: " + str(r);
print;
print one,l1,l2;
u0 = 3; u1 = 5; u2 = 7; u12 = 11;
f1 = (u1+u12)*(l1+l2+2)*(l1+1)*(l1+l2+1)\
+ (u12)*l1*(l1+1)*(l1+l2+1)\
- (u2+u12)*l1*(l1+l2+2)*(l1+l2+1)\
- (u0+u1+u2+u12)*l1*(l1+l2+2)*(l1+1) ;
f2 = (u2+u12)*(l1+l2+2)*(l2+1)*(l1+l2+1)\
+ (u12)*l2*(l2+1)*(l1+l2+1)\
- (u1+u12)*l2*(l1+l2+2)*(l1+l2+1)\
示例6: PolyRing
#
# jython examples for jas.
# $Id$
#
import sys
from java.lang import System
from jas import PolyRing, Ideal
from jas import QQ, AN, RF
from jas import terminate, startLog
# polynomial examples: prime/primary decomposition in Q[w2,x,wx,y,z]
Q = PolyRing(QQ(), "w2,x,wx,y,z", PolyRing.lex)
print "Q = " + str(Q)
[e, w2, x, wx, y, z] = Q.gens()
print "e = " + str(e)
print "w2 = " + str(w2)
print "x = " + str(x)
print "wx = " + str(wx)
print "y = " + str(y)
print "z = " + str(z)
print
w1 = w2 ** 2 - 2
w2 = wx ** 2 - x
f1 = (y ** 2 - x) * (y ** 2 - 2)
# f1 = ( y**2 - x )**3 * ( y**2 - 2 )**2;
示例7: Z_p
import sys
from java.lang import System
from java.lang import Integer
from jas import Ring
from jas import PolyRing
from jas import Ideal
from jas import ZM, QQ, AN, RF
from jas import terminate
from jas import startLog
# polynomial examples: factorization over Z_p(x)(sqrt3(x))[y]
Q = PolyRing(ZM(5),"x",PolyRing.lex);
print "Q = " + str(Q);
[e,a] = Q.gens();
#print "e = " + str(e);
print "a = " + str(a);
Qr = RF(Q);
print "Qr = " + str(Qr.factory());
[er,ar] = Qr.gens();
#print "er = " + str(er);
#print "ar = " + str(ar);
print;
Qwx = PolyRing(Qr,"wx",PolyRing.lex);
print "Qwx = " + str(Qwx);
[ewx,ax,wx] = Qwx.gens();
示例8: Q
#
# jython examples for jas.
# $Id$
#
import sys
from java.lang import System
from jas import Ring, PolyRing
from jas import QQ, AN
from jas import terminate, startLog
# polynomial examples: absolute factorization over Q(i)
Qr = PolyRing(QQ(), "i", PolyRing.lex)
print "Qr = " + str(Qr)
[e, a] = Qr.gens()
print "e = " + str(e)
print "a = " + str(a)
print
imag = a ** 2 + 1
print "imag = " + str(imag)
Qi = AN(imag, field=True)
print "Qi = " + str(Qi.factory())
[one, i] = Qi.gens()
print "one = " + str(one)
print "i = " + str(i)
print
示例9: Ring
import sys;
from jas import Ring, PolyRing, RF, ZZ, QQ
from jas import startLog, terminate
from edu.jas.arith import ModIntegerRing
#startLog();
# Hawes & Gibson example 2
# rational function coefficients
#r = Ring( "RatFunc(a, c, b) (y2, y1, z1, z2, x) G" );
r = PolyRing( RF(PolyRing(ZZ(),"a, c, b",PolyRing.lex)), "y2, y1, z1, z2, x", PolyRing.grad );
print "Ring: " + str(r);
print;
ps = """
(
( x + 2 y1 z1 + { 3 a } y1^2 + 5 y1^4 + { 2 c } y1 ),
( x + 2 y2 z2 + { 3 a } y2^2 + 5 y2^4 + { 2 c } y2 ),
( 2 z2 + { 6 a } y2 + 20 y2^3 + { 2 c } ),
( 3 z1^2 + y1^2 + { b } ),
( 3 z2^2 + y2^2 + { b } )
)
""";
f = r.paramideal( ps );
print "Ideal: " + str(f);
示例10: Ring
import sys;
from jas import QQ, Ring, PolyRing, Ideal
from jas import startLog, terminate
# trinks 6/7 example
#r = Ring( "Mod 19 (B,S,T,Z,P,W) L" );
#r = Ring( "Mod 1152921504606846883 (B,S,T,Z,P,W) L" ); # 2^60-93
#r = Ring( "Quat(B,S,T,Z,P,W) L" );
#r = Ring( "Z(B,S,T,Z,P,W) L" );
#r = Ring( "C(B,S,T,Z,P,W) L" );
#r = Ring( "Rat(B,S,T,Z,P,W) L" );
r = PolyRing( QQ(),"B,S,T,Z,P,W", PolyRing.lex);
print "Ring: " + str(r);
print;
ps = """
(
( 45 P + 35 S - 165 B - 36 ),
( 35 P + 40 Z + 25 T - 27 S ),
( 15 W + 25 S P + 30 Z - 18 T - 165 B**2 ),
( - 9 W + 15 T P + 20 S Z ),
( P W + 2 T Z - 11 B**3 ),
( 99 W - 11 B S + 3 B**2 ),
( 10000 B**2 + 6600 B + 2673 )
)
""";
示例11: PolyRing
# jython examples for jas.
# $Id$
#
import sys;
from jas import Ring, PolyRing, Ideal
from jas import QQ, ZZ, RF
from jas import startLog, terminate
# example: Algebraic Statistics
# Drton, Sturmfels, Sullivant, example 2.1.3
r = PolyRing(RF(PolyRing(QQ(),"u0,u1,u2,u12",PolyRing.lex)),"l1,l2",PolyRing.grad);
print "Ring: " + str(r);
print;
print one,u0,u1,u2,u12,l1,l2;
f1 = (u1+u12)*(l1+l2+2)*(l1+1)*(l1+l2+1)\
+ (u12)*l1*(l1+1)*(l1+l2+1)\
- (u2+u12)*l1*(l1+l2+2)*(l1+l2+1)\
- (u0+u1+u2+u12)*l1*(l1+l2+2)*(l1+1) ;
f2 = (u2+u12)*(l1+l2+2)*(l2+1)*(l1+l2+1)\
+ (u12)*l2*(l2+1)*(l1+l2+1)\
- (u1+u12)*l2*(l1+l2+2)*(l1+l2+1)\
- (u0+u1+u2+u12)*l2*(l1+l2+2)*(l2+1) ;
示例12: PolyRing
#
# jython examples for jas.
# $Id$
#
from java.lang import System
from jas import PolyRing, ZM, GF
from jas import terminate, startLog
# system biology examples: GB in Z_2
# see: Informatik Spektrum, 2009, February,
# Laubenbacher, Sturmfels: Computer Algebra in der Systembiologie
r = PolyRing(GF(2),"M, B, A, L, P",PolyRing.lex);
print "PolyRing: " + str(r);
print;
#automatic: [one,M,B,A,L,P] = r.gens();
f1 = M - A;
f2 = B - M;
f3 = A - A - L * B - A * L * B;
f4 = P - M;
f5 = L - P - L - L * B - L * P - L * B * P;
## t1 = M - 1;
## t2 = B - 1;
## t3 = A - 1;
## t4 = L - 1;
## t5 = P - 1;
#
示例13: PolyRing
from jas import PolyRing, ZZ, QQ, ZM
from jas import terminate, startLog
from basic_sigbased_gb import sigbased_gb
from basic_sigbased_gb import ggv, ggv_first_implementation
from basic_sigbased_gb import coeff_free_sigbased_gb
from basic_sigbased_gb import arris_algorithm, min_size_mons
from basic_sigbased_gb import f5, f5z
from staggered_linear_basis import staglinbasis
#r = PolyRing( QQ(), "(B,S,T,Z,P,W)", PolyRing.lex );
#r = PolyRing( ZZ(), "(B,S,T,Z,P,W)", PolyRing.lex );
r = PolyRing( ZM(32003), "(B,S,T,Z,P,W)", PolyRing.lex );
#r = PolyRing( ZM(19), "(B,S,T,Z,P,W)", PolyRing.lex );
print "Ring: " + str(r);
print;
[one,B,S,T,Z,P,W] = r.gens();
p1 = 45 * P + 35 * S - 165 * B - 36;
p2 = 35 * P + 40 * Z + 25 * T - 27 * S;
p3 = 15 * W + 25 * S * P + 30 * Z - 18 * T - 165 * B**2;
p4 = -9 * W + 15 * T * P + 20 * S * Z;
p5 = P * W + 2 * T * Z - 11 * B**3;
p6 = 99 * W - 11 * B * S + 3 * B**2;
p7 = 10000 * B**2 + 6600 * B + 2673;
F = [p1,p2,p3,p4,p5,p6,p7];
示例14: Ring
#
# jython examples for jas.
# $Id$
#
from java.lang import System
from jas import GF, PolyRing
from jas import terminate, startLog
# polynomial examples: factorization over Z_p
#r = Ring( "Mod 1152921504606846883 (x) L" );
#r = Ring( "Mod 19 (x) L" );
r = PolyRing( GF(19), "x", PolyRing.lex );
print "Ring: " + str(r);
print;
#[one,x] = r.gens();
#f = x**15 - 1;
#f = x * ( x + 1 )**2 * ( x**2 + x + 1 )**3;
#f = x**6 - 3 * x**5 + x**4 - 3 * x**3 - x**2 - 3 * x+ 1;
#f = x**(3*11*11) + 3 * x**(2*11*11) - x**(11*11);
#f = x**(3*11*11*11) + 3 * x**(2*11*11*11) - x**(11*11*11);
#f = (x**2+1)*(x-3)*(x-5)**3;
#f = x**4 + 1;
#f = x**12 + x**9 + x**6 + x**3 + 1;
#f = x**24 - 1;
#f = x**20 - 1;
#f = x**22 - 1;
示例15: Ring
# jython examples for jas.
# $Id$
#
from java.lang import System
from jas import Ring, PolyRing, QQ, ZZ, GF
from jas import terminate, startLog
# polynomial examples: gcd
#r = Ring( "Mod 1152921504606846883 (x,y,z) L" );
#r = Ring( "Rat(x,y,z) L" );
#r = Ring( "C(x,y,z) L" );
#r = Ring( "Z(x,y,z) L" );
r = PolyRing( QQ(), "x,y,z", PolyRing.lex );
print "Ring: " + str(r);
print;
#[one,x,y,z] = r.gens();
a = r.random();
b = r.random();
c = abs(r.random());
#c = 1;
#a = 0;
print "a = ", a;
print "b = ", b;
print "c = ", c;