本文整理汇总了Python中ipyparallel.Client.block方法的典型用法代码示例。如果您正苦于以下问题:Python Client.block方法的具体用法?Python Client.block怎么用?Python Client.block使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ipyparallel.Client
的用法示例。
在下文中一共展示了Client.block方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from ipyparallel import Client [as 别名]
# 或者: from ipyparallel.Client import block [as 别名]
def __init__(self):
from ipyparallel import Client
rc = Client()
rc.block=True
self.cpu = rc[:]
print '{} cores ready'.format(len(self.cpu))
self.cpu.execute('import numpy as np')
self.cpu.execute('from sklearn.neighbors import KDTree, BallTree')
示例2: main
# 需要导入模块: from ipyparallel import Client [as 别名]
# 或者: from ipyparallel.Client import block [as 别名]
def main():
parser = OptionParser()
parser.set_defaults(n=100)
parser.set_defaults(tmin=1e-3)
parser.set_defaults(tmax=1)
parser.set_defaults(profile='default')
parser.add_option("-n", type='int', dest='n',
help='the number of tasks to run')
parser.add_option("-t", type='float', dest='tmin',
help='the minimum task length in seconds')
parser.add_option("-T", type='float', dest='tmax',
help='the maximum task length in seconds')
parser.add_option("-p", '--profile', type='str', dest='profile',
help="the cluster profile [default: 'default']")
(opts, args) = parser.parse_args()
assert opts.tmax >= opts.tmin, "tmax must not be smaller than tmin"
rc = Client()
view = rc.load_balanced_view()
print(view)
rc.block=True
nengines = len(rc.ids)
with rc[:].sync_imports():
from IPython.utils.timing import time
# the jobs should take a random time within a range
times = [random.random()*(opts.tmax-opts.tmin)+opts.tmin for i in range(opts.n)]
stime = sum(times)
print("executing %i tasks, totalling %.1f secs on %i engines"%(opts.n, stime, nengines))
time.sleep(1)
start = time.time()
amr = view.map(time.sleep, times)
amr.get()
stop = time.time()
ptime = stop-start
scale = stime/ptime
print("executed %.1f secs in %.1f secs"%(stime, ptime))
print("%.3fx parallel performance on %i engines"%(scale, nengines))
print("%.1f%% of theoretical max"%(100*scale/nengines))
示例3: Client
# 需要导入模块: from ipyparallel import Client [as 别名]
# 或者: from ipyparallel.Client import block [as 别名]
potentially its memory buffers if the messages are not consumed in a streamed
manner.
Note that the AllReduce scheme implemented with the spanning tree strategy
impose the aggregation function to be commutative and distributive. It might
not be the case if you implement the naive gather / reduce / broadcast strategy
where you can reorder the partial data before performing the reduce.
"""
from __future__ import print_function
from ipyparallel import Client, Reference
# connect client and create views
rc = Client()
rc.block = True
ids = rc.ids
root_id = ids[0]
root = rc[root_id]
view = rc[:]
# run bintree.py script defining bintree functions, etc.
exec(compile(open("bintree.py").read(), "bintree.py", "exec"))
# generate binary tree of parents
btree = bintree(ids)
print("setting up binary tree interconnect:")
print_bintree(btree)
示例4: __init__
# 需要导入模块: from ipyparallel import Client [as 别名]
# 或者: from ipyparallel.Client import block [as 别名]
def __init__(self):
from ipyparallel import Client
rc = Client()
rc.block=True
self.cpu = rc[:]