当前位置: 首页>>代码示例>>Python>>正文


Python under_sampling.NearMiss类代码示例

本文整理汇总了Python中imblearn.under_sampling.NearMiss的典型用法代码示例。如果您正苦于以下问题:Python NearMiss类的具体用法?Python NearMiss怎么用?Python NearMiss使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了NearMiss类的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_nm3_fit_sample_nn_obj

def test_nm3_fit_sample_nn_obj():
    """Test fit-sample with nn object"""

    # Define the parameter for the under-sampling
    ratio = 'auto'

    # Create the object
    nn = NearestNeighbors(n_neighbors=3)
    nn3 = NearestNeighbors(n_neighbors=3)
    nm3 = NearMiss(
        ratio=ratio,
        random_state=RND_SEED,
        version=VERSION_NEARMISS,
        return_indices=True,
        n_neighbors=nn,
        n_neighbors_ver3=nn3)

    # Fit and sample
    X_resampled, y_resampled, idx_under = nm3.fit_sample(X, Y)

    X_gt = np.array([[0.91464286, 1.61369212], [-0.80809175, -1.09917302],
                     [-0.20497017, -0.26630228], [1.17737838, -0.2002118],
                     [-0.60413357, 0.24628718], [0.03142011, 0.12323596],
                     [1.15157493, -1.2981518], [-0.54619583, 1.73009918],
                     [0.99272351, -0.11631728]])
    y_gt = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])
    idx_gt = np.array([3, 10, 11, 0, 2, 3, 5, 1, 4])
    assert_array_equal(X_resampled, X_gt)
    assert_array_equal(y_resampled, y_gt)
    assert_array_equal(idx_under, idx_gt)
开发者ID:kellyhennigan,项目名称:cueexp_scripts,代码行数:30,代码来源:test_nearmiss_3.py

示例2: test_nm_fit_resample_auto

def test_nm_fit_resample_auto():
    sampling_strategy = 'auto'
    X_gt = [
        np.array([[0.91464286, 1.61369212], [-0.80809175, -1.09917302], [
            -0.20497017, -0.26630228
        ], [-0.05903827, 0.10947647], [0.03142011, 0.12323596],
                  [-0.60413357, 0.24628718], [0.50701028, -0.17636928],
                  [0.4960075, 0.86130762], [0.45713638, 1.31069295]]),
        np.array([[0.91464286, 1.61369212], [-0.80809175, -1.09917302], [
            -0.20497017, -0.26630228
        ], [-0.05903827, 0.10947647], [0.03142011, 0.12323596],
                  [-0.60413357, 0.24628718], [0.50701028, -0.17636928],
                  [0.4960075, 0.86130762], [0.45713638, 1.31069295]]),
        np.array([[0.91464286, 1.61369212], [-0.80809175, -1.09917302], [
            -0.20497017, -0.26630228
        ], [1.17737838, -0.2002118], [-0.60413357, 0.24628718],
                  [0.03142011, 0.12323596], [1.15157493, -1.2981518],
                  [-0.54619583, 1.73009918], [0.99272351, -0.11631728]])
    ]
    y_gt = [
        np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]),
        np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]),
        np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])
    ]
    for version_idx, version in enumerate(VERSION_NEARMISS):
        nm = NearMiss(sampling_strategy=sampling_strategy, version=version)
        X_resampled, y_resampled = nm.fit_resample(X, Y)
        assert_array_equal(X_resampled, X_gt[version_idx])
        assert_array_equal(y_resampled, y_gt[version_idx])
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:29,代码来源:test_nearmiss.py

示例3: test_multiclass_fit_sample

def test_multiclass_fit_sample():
    """Test fit sample method with multiclass target"""

    # Make y to be multiclass
    y = Y.copy()
    y[0:1000] = 2

    # Resample the data
    nm = NearMiss(random_state=RND_SEED, version=VERSION_NEARMISS)
    X_resampled, y_resampled = nm.fit_sample(X, y)

    # Check the size of y
    count_y_res = Counter(y_resampled)
    assert_equal(count_y_res[0], 400)
    assert_equal(count_y_res[1], 166)
    assert_equal(count_y_res[2], 144)
开发者ID:integrallyclosed,项目名称:imbalanced-learn,代码行数:16,代码来源:test_nearmiss_3.py

示例4: test_nm2_fit

def test_nm2_fit():
    """Test the fitting method"""

    # Define the parameter for the under-sampling
    ratio = 'auto'

    # Create the object
    nm2 = NearMiss(ratio=ratio, random_state=RND_SEED,
                   version=VERSION_NEARMISS)
    # Fit the data
    nm2.fit(X, Y)

    # Check if the data information have been computed
    assert_equal(nm2.min_c_, 0)
    assert_equal(nm2.maj_c_, 1)
    assert_equal(nm2.stats_c_[0], 500)
    assert_equal(nm2.stats_c_[1], 4500)
开发者ID:apyeh,项目名称:UnbalancedDataset,代码行数:17,代码来源:test_nearmiss_2.py

示例5: test_nm2_fit_sample_half

def test_nm2_fit_sample_half():
    """Test fit and sample routines with .5 ratio"""

    # Define the parameter for the under-sampling
    ratio = .5

    # Create the object
    nm2 = NearMiss(ratio=ratio, random_state=RND_SEED,
                   version=VERSION_NEARMISS)

    # Fit and sample
    X_resampled, y_resampled = nm2.fit_sample(X, Y)

    currdir = os.path.dirname(os.path.abspath(__file__))
    X_gt = np.load(os.path.join(currdir, 'data', 'nm2_x_05.npy'))
    y_gt = np.load(os.path.join(currdir, 'data', 'nm2_y_05.npy'))
    assert_array_equal(X_resampled, X_gt)
    assert_array_equal(y_resampled, y_gt)
开发者ID:apyeh,项目名称:UnbalancedDataset,代码行数:18,代码来源:test_nearmiss_2.py

示例6: test_nm2_fit_sample_auto_indices

def test_nm2_fit_sample_auto_indices():
    """Test fit and sample routines with auto ratio and indices support"""

    # Define the parameter for the under-sampling
    ratio = 'auto'

    # Create the object
    nm2 = NearMiss(ratio=ratio, random_state=RND_SEED,
                   version=VERSION_NEARMISS, return_indices=True)

    # Fit and sample
    X_resampled, y_resampled, idx_under = nm2.fit_sample(X, Y)

    currdir = os.path.dirname(os.path.abspath(__file__))
    X_gt = np.load(os.path.join(currdir, 'data', 'nm2_x.npy'))
    y_gt = np.load(os.path.join(currdir, 'data', 'nm2_y.npy'))
    idx_gt = np.load(os.path.join(currdir, 'data', 'nm2_idx.npy'))
    assert_array_equal(X_resampled, X_gt)
    assert_array_equal(y_resampled, y_gt)
    assert_array_equal(idx_under, idx_gt)
开发者ID:apyeh,项目名称:UnbalancedDataset,代码行数:20,代码来源:test_nearmiss_2.py

示例7: test_nm3_fit_sample_auto

def test_nm3_fit_sample_auto():
    """Test fit and sample routines with auto ratio"""

    # Define the parameter for the under-sampling
    ratio = 'auto'

    # Create the object
    nm3 = NearMiss(
        ratio=ratio, random_state=RND_SEED, version=VERSION_NEARMISS)

    # Fit and sample
    X_resampled, y_resampled = nm3.fit_sample(X, Y)

    X_gt = np.array([[0.91464286, 1.61369212], [-0.80809175, -1.09917302],
                     [-0.20497017, -0.26630228], [1.17737838, -0.2002118],
                     [-0.60413357, 0.24628718], [0.03142011, 0.12323596],
                     [1.15157493, -1.2981518], [-0.54619583, 1.73009918],
                     [0.99272351, -0.11631728]])
    y_gt = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])
    assert_array_equal(X_resampled, X_gt)
    assert_array_equal(y_resampled, y_gt)
开发者ID:kellyhennigan,项目名称:cueexp_scripts,代码行数:21,代码来源:test_nearmiss_3.py

示例8: test_nm_wrong_nn_obj

def test_nm_wrong_nn_obj():
    sampling_strategy = 'auto'
    nn = 'rnd'
    nm = NearMiss(
        sampling_strategy=sampling_strategy,
        version=VERSION_NEARMISS,
        return_indices=True,
        n_neighbors=nn)
    with raises(ValueError, match="has to be one of"):
        nm.fit_resample(X, Y)
    nn3 = 'rnd'
    nn = NearestNeighbors(n_neighbors=3)
    nm3 = NearMiss(
        sampling_strategy=sampling_strategy,
        version=3,
        return_indices=True,
        n_neighbors=nn,
        n_neighbors_ver3=nn3)
    with raises(ValueError, match="has to be one of"):
        nm3.fit_resample(X, Y)
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:20,代码来源:test_nearmiss.py

示例9: test_nearmiss_wrong_version

def test_nearmiss_wrong_version():
    version = 1000
    nm = NearMiss(version=version)
    with raises(ValueError, match="must be 1, 2 or 3"):
        nm.fit_resample(X, Y)
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:5,代码来源:test_nearmiss.py

示例10: test_deprecation_random_state

def test_deprecation_random_state():
    nm = NearMiss(random_state=0)
    with warns(
            DeprecationWarning, match="'random_state' is deprecated from 0.4"):
        nm.fit_resample(X, Y)
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:5,代码来源:test_nearmiss.py


注:本文中的imblearn.under_sampling.NearMiss类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。