当前位置: 首页>>代码示例>>Python>>正文


Python ClusterCentroids.fit_sample方法代码示例

本文整理汇总了Python中imblearn.under_sampling.ClusterCentroids.fit_sample方法的典型用法代码示例。如果您正苦于以下问题:Python ClusterCentroids.fit_sample方法的具体用法?Python ClusterCentroids.fit_sample怎么用?Python ClusterCentroids.fit_sample使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在imblearn.under_sampling.ClusterCentroids的用法示例。


在下文中一共展示了ClusterCentroids.fit_sample方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_fit_sample_check_voting

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
def test_fit_sample_check_voting():
    cc = ClusterCentroids(random_state=RND_SEED)
    cc.fit_sample(X, Y)
    assert cc.voting_ == 'soft'
    cc = ClusterCentroids(random_state=RND_SEED)
    cc.fit_sample(sparse.csr_matrix(X), Y)
    assert cc.voting_ == 'hard'
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:9,代码来源:test_cluster_centroids.py

示例2: test_fit_sample_error

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
def test_fit_sample_error():
    ratio = 'auto'
    cluster = 'rnd'
    cc = ClusterCentroids(
        ratio=ratio, random_state=RND_SEED, estimator=cluster)
    with raises(ValueError, match="has to be a KMeans clustering"):
        cc.fit_sample(X, Y)

    voting = 'unknown'
    cc = ClusterCentroids(ratio=ratio, voting=voting, random_state=RND_SEED)
    with raises(ValueError, match="needs to be one of"):
        cc.fit_sample(X, Y)
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:14,代码来源:test_cluster_centroids.py

示例3: test_multiclass_fit_sample

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
def test_multiclass_fit_sample():
    y = Y.copy()
    y[5] = 2
    y[6] = 2
    cc = ClusterCentroids(random_state=RND_SEED)
    X_resampled, y_resampled = cc.fit_sample(X, y)
    count_y_res = Counter(y_resampled)
    assert count_y_res[0] == 2
    assert count_y_res[1] == 2
    assert count_y_res[2] == 2
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:12,代码来源:test_cluster_centroids.py

示例4: test_fit_sample_auto

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
def test_fit_sample_auto():
    ratio = 'auto'
    cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED)
    X_resampled, y_resampled = cc.fit_sample(X, Y)
    X_gt = np.array([[0.92923648, 0.76103773],
                     [0.47104475, 0.44386323],
                     [0.13347175, 0.12167502],
                     [0.06738818, -0.529627],
                     [0.17901516, 0.69860992],
                     [0.094035, -2.55298982]])
    y_gt = np.array([0, 0, 0, 1, 1, 1])
    assert_allclose(X_resampled, X_gt, rtol=R_TOL)
    assert_array_equal(y_resampled, y_gt)
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:15,代码来源:test_cluster_centroids.py

示例5: test_multiclass_fit_sample

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
def test_multiclass_fit_sample():
    """Test fit sample method with multiclass target"""

    # Make y to be multiclass
    y = Y.copy()
    y[0:1000] = 2

    # Resample the data
    cc = ClusterCentroids(random_state=RND_SEED)
    X_resampled, y_resampled = cc.fit_sample(X, y)

    # Check the size of y
    count_y_res = Counter(y_resampled)
    assert_equal(count_y_res[0], 400)
    assert_equal(count_y_res[1], 400)
    assert_equal(count_y_res[2], 400)
开发者ID:integrallyclosed,项目名称:imbalanced-learn,代码行数:18,代码来源:test_cluster_centroids.py

示例6: test_fit_sample_half

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
def test_fit_sample_half():
    ratio = {0: 3, 1: 6}
    cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED)
    X_resampled, y_resampled = cc.fit_sample(X, Y)
    X_gt = np.array([[0.92923648, 0.76103773],
                     [0.13347175, 0.12167502],
                     [0.47104475, 0.44386323],
                     [0.09125309, -0.85409574],
                     [0.19220316, 0.32337101],
                     [0.094035, -2.55298982],
                     [0.20792588, 1.49407907],
                     [0.04352327, -0.20515826],
                     [0.12372842, 0.6536186]])
    y_gt = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1])
    print(X_resampled)
    assert_allclose(X_resampled, X_gt, rtol=R_TOL)
    assert_array_equal(y_resampled, y_gt)
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:19,代码来源:test_cluster_centroids.py

示例7: test_fit_sample_half

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
def test_fit_sample_half():
    """Test fit and sample routines with ratio of .5"""

    # Define the parameter for the under-sampling
    ratio = .5

    # Create the object
    cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED)

    # Fit and sample
    X_resampled, y_resampled = cc.fit_sample(X, Y)

    currdir = os.path.dirname(os.path.abspath(__file__))
    X_gt = np.load(os.path.join(currdir, 'data', 'cc_x_05.npy'))
    y_gt = np.load(os.path.join(currdir, 'data', 'cc_y_05.npy'))
    assert_array_equal(X_resampled, X_gt)
    assert_array_equal(y_resampled, y_gt)
开发者ID:integrallyclosed,项目名称:imbalanced-learn,代码行数:19,代码来源:test_cluster_centroids.py

示例8: test_fit_sample_auto

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
def test_fit_sample_auto():
    """Test fit and sample routines with auto ratio"""

    # Define the parameter for the under-sampling
    ratio = 'auto'

    # Create the object
    cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED)

    # Fit and sample
    X_resampled, y_resampled = cc.fit_sample(X, Y)

    X_gt = np.array([[0.92923648, 0.76103773], [0.47104475, 0.44386323],
                     [0.13347175, 0.12167502], [0.06738818, -0.529627],
                     [0.17901516, 0.69860992], [0.094035, -2.55298982]])
    y_gt = np.array([0, 0, 0, 1, 1, 1])
    assert_array_almost_equal(X_resampled, X_gt)
    assert_array_equal(y_resampled, y_gt)
开发者ID:kellyhennigan,项目名称:cueexp_scripts,代码行数:20,代码来源:test_cluster_centroids.py

示例9: test_fit_hard_voting

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
def test_fit_hard_voting():
    ratio = 'auto'
    voting = 'hard'
    cluster = KMeans(random_state=RND_SEED)
    cc = ClusterCentroids(
        ratio=ratio, random_state=RND_SEED, estimator=cluster,
        voting=voting)

    X_resampled, y_resampled = cc.fit_sample(X, Y)
    X_gt = np.array([[0.92923648, 0.76103773],
                     [0.47104475, 0.44386323],
                     [0.13347175, 0.12167502],
                     [0.09125309, -0.85409574],
                     [0.12372842, 0.6536186],
                     [0.094035, -2.55298982]])
    y_gt = np.array([0, 0, 0, 1, 1, 1])
    assert_allclose(X_resampled, X_gt, rtol=R_TOL)
    assert_array_equal(y_resampled, y_gt)
    for x in X_resampled:
        assert np.any(np.all(x == X, axis=1))
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:22,代码来源:test_cluster_centroids.py

示例10: test_fit_sample_half

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
def test_fit_sample_half():
    """Test fit and sample routines with ratio of .5"""

    # Define the parameter for the under-sampling
    ratio = .5

    # Create the object
    cc = ClusterCentroids(ratio=ratio, random_state=RND_SEED)

    # Fit and sample
    X_resampled, y_resampled = cc.fit_sample(X, Y)

    X_gt = np.array([[0.92923648, 0.76103773], [0.47104475, 0.44386323],
                     [0.13347175, 0.12167502], [0.09125309, -0.85409574],
                     [0.19220316, 0.32337101], [0.094035, -2.55298982],
                     [0.20792588, 1.49407907], [0.04352327, -0.20515826],
                     [0.12372842, 0.6536186]])
    y_gt = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1])
    assert_array_almost_equal(X_resampled, X_gt)
    assert_array_equal(y_resampled, y_gt)
开发者ID:kellyhennigan,项目名称:cueexp_scripts,代码行数:22,代码来源:test_cluster_centroids.py

示例11: make_classification

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
from imblearn.under_sampling import ClusterCentroids

# Generate the dataset
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
                           n_informative=3, n_redundant=1, flip_y=0,
                           n_features=20, n_clusters_per_class=1,
                           n_samples=5000, random_state=10)

# Instanciate a PCA object for the sake of easy visualisation
pca = PCA(n_components=2)
# Fit and transform x to visualise inside a 2D feature space
X_vis = pca.fit_transform(X)

# Apply Cluster Centroids
cc = ClusterCentroids()
X_resampled, y_resampled = cc.fit_sample(X, y)
X_res_vis = pca.transform(X_resampled)

# Two subplots, unpack the axes array immediately
f, (ax1, ax2) = plt.subplots(1, 2)

ax1.scatter(X_vis[y == 0, 0], X_vis[y == 0, 1], label="Class #0", alpha=0.5,
            edgecolor=almost_black, facecolor=palette[0], linewidth=0.15)
ax1.scatter(X_vis[y == 1, 0], X_vis[y == 1, 1], label="Class #1", alpha=0.5,
            edgecolor=almost_black, facecolor=palette[2], linewidth=0.15)
ax1.set_title('Original set')

ax2.scatter(X_res_vis[y_resampled == 0, 0], X_res_vis[y_resampled == 0, 1],
            label="Class #0", alpha=.5, edgecolor=almost_black,
            facecolor=palette[0], linewidth=0.15)
ax2.scatter(X_res_vis[y_resampled == 1, 0], X_res_vis[y_resampled == 1, 1],
开发者ID:apyeh,项目名称:UnbalancedDataset,代码行数:33,代码来源:plot_cluster_centroids.py

示例12: train_test_split

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')


#define X y
X, y = data.loc[:,data.columns != 'state'].values, data.loc[:,data.columns == 'state'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

#ClusterCentroids
cc = ClusterCentroids(random_state=0)
os_X,os_y = cc.fit_sample(X_train,y_train)

#XGboost
clf_XG = XGBClassifier(learning_rate= 0.3, min_child_weight=1,
                       max_depth=6,gamma=0,subsample=1, max_delta_step=0, colsample_bytree=1,
                       reg_lambda=1, n_estimators=100, seed=1000, scale_pos_weight=1000)  
clf_XG.fit(os_X, os_y,eval_set=[(os_X, os_y), (X_test, y_test)],eval_metric='auc',verbose=False)  
evals_result = clf_XG.evals_result()  
y_true, y_pred = y_test, clf_XG.predict(X_test)  

#F1_score, precision, recall, specifity, G score
print "F1_score : %.4g" % metrics.f1_score(y_true, y_pred)  
print "Recall : %.4g" % metrics.recall_score(y_true, y_pred)
recall = metrics.recall_score(y_true, y_pred)  
print "Precision : %.4g" % metrics.precision_score(y_true, y_pred)
 
开发者ID:non27,项目名称:The-final-assignment,代码行数:32,代码来源:XGboost+ClusterCentroids.py

示例13: print

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
            print("")

            
            print('-----------------')
            best_dict[imbalance] = [clf, roc_auc_score(y_test, clf.predict(X_test))]

#analysis with just cluster centroids(best imbalancer)
classifiers = [LogisticRegression(), SVC(probability=True),
                      GaussianNB(), DecisionTreeClassifier(), RandomForestClassifier(),
                      KNeighborsClassifier(n_neighbors=6)]

cc = ClusterCentroids()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
                                                         random_state=4444)
        
X_train, y_train = cc.fit_sample(X_train, y_train)


fprs,tprs,roc_aucs = [],[],[]
for clf in classifiers:
    clf.fit(X_train,y_train)
    y_pred = clf.predict_proba(X_test)[:,1]

    y_true = y_test
    
    fpr, tpr, _ = roc_curve(y_true, y_pred)
    roc_auc = auc(fpr, tpr)
    
    fprs.append(fpr)
    tprs.append(tpr)
    roc_aucs.append(roc_auc)
开发者ID:jrcox,项目名称:mcnulty,代码行数:33,代码来源:mcnulty_analysis.py

示例14: open

# 需要导入模块: from imblearn.under_sampling import ClusterCentroids [as 别名]
# 或者: from imblearn.under_sampling.ClusterCentroids import fit_sample [as 别名]
import sys, os, csv
from imblearn.under_sampling import ClusterCentroids
input_csv_file = sys.argv[1]
input_csv = input_csv_file.split(".csv")[0]
with open(input_csv_file, newline="") as input_file:
    reader = csv.reader(input_file, delimiter=',')
    with open(input_csv + "-cc-.csv", 'w', newline='') as output_file:
        writer = csv.writer(output_file, delimiter=',')
        skip_header = True
        X = []
        y = []
        cc = ClusterCentroids()
        for x in reader:
            if skip_header:
                skip_header = False
                continue
            y.append(x[-1])
            X.append(list(map(int, x[:len(x) - 1])))
            #print (X)
        X_res, y_res = cc.fit_sample(X, y)        
        print (len(X_res))
        print (len(y_res))
        for idx, s in enumerate(X_res):
            #print (list(s) + list(y_res[idx]))
            writer.writerow(list(s) + list(y_res[idx]))
            #break;
            
开发者ID:punkie,项目名称:master-thesis,代码行数:28,代码来源:cc-undersampling.py


注:本文中的imblearn.under_sampling.ClusterCentroids.fit_sample方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。